The Protégé Axiom Language: Overall Design Considerations

This document is intended to explain the design and architecture of the Protege Axiom Language (hereafter PAL). It is not intended as a formal specification, and it is certainly not intended to fully (or even correctly) specify the constraint system functionality. Instead, it is a discussion-level snapshot of an evolving design, intended to educate a target audience about the functionality and features that the constraint system will add to Protege.

The target audience has the following characteristics:

· Some experience with class/instance style modeling. We won’t be diving into any subtleties here: a basic familiarity with any of Object-oriented programming, Entity-relationship modeling, or frame-based representations (e.g. Protege-2000) should suffice. Note however that this document will use the basic terminology of frame-based modeling quite extensively— regrettably, sentences such as “if a slot X is attached to a frame Y” may occur.

· Some familiarity with the Protege-2000 user interface. We will use the occasional screenshot. Moreover, in the discussion of implementation details, we will assume a certain familiarity with the “forms panel” and the idea of tabs. Moreover, an important part of this explanation are the Protege projects that accompany this document—readers should feel comfortable opening and browsing a Protege project.

· Some degree of patience. This is not a totally polished document. In fact, it is very much a work in progress.

The Purpose of a Constraint Engine

In the Protege-2000 model, a knowledge base is entirely created by human users. Users define hierarchies of classes and then acquire instances of classes by filling out forms. Knowledge-bases are difficult to build, rely on intricate subtle distinctions (cf: the distinction between an Activity and an Event in the Worldhistory project) and are built collaboratively, by multiple users working over an extended period of time. And so a fundamental question of knowledge-bases arises:

 How can I guarantee that the knowledge-base accurately reflects the real world ?

The answer, of course, is that you can’t (cf: [Szolovits et al, 1991 or 1992 in AI Magazine]). However, you can try to guarantee as much as possible, and guard against the possibility of erroneous data entry as much as possible.

The first level of data validation is provided by the notion of slot value-types. When a slot is attached to a class, it can be given a value-type (one of: Any, Boolean, Class, Instance, Integer, String, Symbol). These value types have meaning—if a slot has value type Integer, the values of the slot are supposed to be integers. Slots also have an associated cardinality—either single or multiple.. A slot is single cardinality if it can have at most one value and multiple cardinality otherwise.

Protege-2000 enforces these restrictions through the use of widgets. A widget is a small, self-contained, piece of user-interface code that can acquire, display, and allow editing of, a single type of value.

When Protege-2000 generates the form associated to a class, it does so by assigning a widget to each slot. These widgets are assigned based on the slot’s value-type and cardinality. Thus, if a slot is attached to a class and has Integer value-type with single cardinality, it will get assigned (by default) the IntegerField widget.

[image: image1.png]
The key point here is that the type restrictions are automatically enforced, in code, by the Widget (since IntegerFieldWidget only knows how to acquire integers, only integers will be acquired).

The next step in constraints is the idea of a facet. Both the value-type and cardinality of a slot are dependent on two things: the slot itself, and the class the slot is attached to. In addition, they are very simple to enforce, and it is easy to detect when then have been violated (doing so only involves looking at the value the slot, not at the rest of the knowledge base). These types of restrictions are commonly called facets. Protege supports about a dozen facets, which get exposed in the user interface on slot forms.

[image: image2.png]
An Example Which Will be Repeatedly Referred To

In order to make this entire discussion concrete, we will start with a hypothetical example project which requires validation beyond those currently supported in Protege-2000. The project will be a knowledge-base of World History (Worldhistory.pprj). As such, it will inherently involve dates and times, and so it will include another project which contains the definitions of temporal concepts (DatesAndTimes.pprj)
.

Because it was created as an example it only contains a few simple generic concepts like Person, Performer, Activity, and Event. These will suffice to illustrate the main points. Please take a few moments to familiarize yourself with the project before continuing.

In particular, we will focus on Person and Activity.

[image: image3.png]
Now, suppose a user is trying define the Roman Conquest of Egypt (an Activity). She creates an instance of Activity and a Consequence and then starts to enumerate the key-actors. But, because it’s the end of a day, she accidentally chooses “Julius Erving” instead of “Julius Caesar” (it’s an easy mistake to make-- they’re adjacent to each other in the list of instances of Person) and continues on.

[image: image4.png]
A facet-based system of constraints, one that simply checks the local slot-values of a frame for consistency, cannot easily detect errors of this sort (facet-based constraints only check for types). We could have done so by subclassing both Activity and Person—we could have done something like the following:

1. Create a sub-class of Activity called RomanAgeActivity
2. Create a subclass of Person called PersonInClassicalEra
3. Narrowed the type value type of the key-performers slot on RomanAgeActivity so that only instances of PersonInClassicalEra are allowed.

[image: image5.png]
But this sort of thing quickly becomes unmanageable. What is needed is a way to make more general assertions about the fundamental concepts. And then check to make sure that the assertions hold across the entire knowledge-base.

For example, suppose we were able to assert the following, common-sense facts:

· All instances of Person have exactly one birth-date

· An instance of Person has at most one death-date

· No person lives more than 200 years

· Any activity a person is a key-actor in must occur after her birth

· Any activity a person is a key-actor in must occur before her death

· Any activity a person is a key-actor in must occur within 200 years of her birth

These are all reasonable, and completely generic, assertions. And, if they could all be enforced, our user would not be able mistake Julius Erving for Julius Caesar
. Indeed, a whole host of errors could be prevented.

The initial goal of the constraint engine is to enable this sort of integrity checking in a flexible and extensible manner. That is, we are not concerned, at this point, with traditional (in AI) reasoning and inference. Instead, we have two goals:

1. Enabling complex assertions to be made about a knowledge-base, involving relationships among classes that are not defined in advance, to be made.

2. Checking to see if these relationships hold directly in the knowledge-base.

Some Vocabulary and a Primer on Logical (KIF-style) Syntax

The traditional way to make these assertions is by using mathematical logic. Thus, in this section, without being fully formal or rigorous, we will introduce some vocabulary and describe the way assertions are made in mathematical logic.

Symbols (also sometimes referred to as an atom) are things you want to make an assertion about. In the case of Protege, symbols will correspond to anything that can be a slot value (integers, floats, ...) and any class or instance.

Predicates are relationships that either hold or don’t hold between symbols. That is, given a relationship and an ordered set of symbols, either the relation is true (for those symbols) or it is not. The syntax we use when writing these is:

(predicate-name symbol-1 symbol-2 symbol-3 ...)

For example:

(parent-of Walter John)

When written in the above fashion, as a single relation, predicates are normally viewed as assertions. That is, the intended meaning of (parent-of Walter John) is the assertion that (parent-of Walter John) is true (e.g., that Walter is the parent of John).

Traditionally, the set of predicates also includes “=” (equality) and “/=” (inequality).

Functions are things that take an ordered set of symbols and produce another symbol. The syntax is much the same as for relations, we simply use a function name instead of a predicate name:

(function-name symbol-1 symbol-2 symbol-3 ...)

For example:

(father Walter John)

Unlike predicates, which make sense when written as single units, it makes no sense to write a function expression by itself. Viewed alone, a function expression (for example, (father Walter John)) is equivalent to a symbol (and hence, has no real meaning as an assertion).

The phrase “equivalent to a symbol” is important. This means that a function expression can be used wherever a symbol could have been used. For example:

(parent-of Andrew (father Mary))

which is really an instantiation of

(relation-name Symbol (function-name symbol))

is the assertion that Andrew is the parent of Mary’s father (whomever that turns out to be).

Connectives and Not are things that are used to glue assertions together to make more complex assertions. Traditionally, the connectives are: and, or, =>, and <=>. They are used in the following way:

(not assertion)

(connective-name assertion assertion)

So, for example,

(or
(parent-of Andrew (father Mary))

(parent-of James (father Mary))

That is: either Andrew or James is a parent of Mary’s father.

The meanings attached to these are the following:

not
Means that the assertion must not hold.

and
Means that all of the assertions must hold.

or
Means that at least one (and possibly more than one—Both James

and Andrew could be parents of Mary’s father) of the assertions must hold.

=>
This means that if the first assertion holds then the second one must also hold (we also usually allow the <= connective, which means that if the second assertion holds, the first must also hold).

<=>
This means that if either assertion holds, then both assertions must hold.

As a side note, the only assertions we had so far are predicates. Connectives give us a second type of assertion, which is built by gluing two assertions together. This process can proceed indefinitely—it is perfectly valid to assert things like:

(or
(parent-of Andrew (father Mary))

(and
(= (father Mary) Andrew)

(parent-of James (father Mary))))

In English, this is

EITHER Andrew is Mary’s grandfather

OR (Andrew is Mary’s father and James is Mary’s grandfather)

This illustrates another point. In the logical interpretation, there is an “or both” possible. That is, the assertion would be correct if both assertions inside the first or were correct.

That is, if both

(parent-of Andrew (father Mary))

(and
(= (father Mary) Andrew)

(parent-of James (father Mary))))

evaluated to true. Whereas, in the English “translation,” this may not make sense (it’s the assertion that Mary has two fathers). This is a general problem with logical sentences—people tend to get them wrong (because they are translating from an “equivalent” English statement).

Quantifiers are the next idea we want to deal with in our discussion of logical syntax. The problem with all the sentences so far is that they are definite assertions about specific symbols. That is,

(parent-of Andrew (father Mary))

asserts that the symbol Andrew and the symbol equivalent to the function (father Mary) are related by the parent-of relation.

But that’s rarely what you want to say. Data integrity and validation really requires sentences like:

“If X is the father of Y, then X must be male”

Where X and Y range over the set of valid symbols. There are two operators that let you do this: forall and exists. Assertions using them take the following form

(forall ?name assertion)

(exists ?name assertion)

That is, the name of the thing being quantified begins with a question and is preceded by either “forall” or “exists.” And the quantification is immediately followed by an assertion. So we get assertions like:

(forall ?X (=>
(exists ?Y (father-of ?X ?Y))

(male ?X))

Which says

For every X, if there exists a Y such that X is the father of Y, the X is male.

There is a technical restriction on the user of quantifiers. Namely, if a variable is being quantified, the range of allowed values for that variable must be specified (and must define a finite and easily enumerable set). This is done by using defrange and defset

(defrange ?var type [additional information])

While there’s no need to get into the syntax of defrange (or defset) in this document, you should be aware that all variables must have an associated range definition.

Encoding our Examples into this Syntax

In the motivating example, we had the following examples of assertions we would like to make. In this section, we will give translations of these assertions into the above syntax, and attempt to illustrate the issues and problems inherent in the translations. To save page-flipping, here are the assertions again:

· All instances of Person have exactly one birth-date

· An instance of Person has at most one death-date

· No Person lives more than 200 years

· Any activity a person is a key-actor in must occur after her birth

· Any activity a person is a key-actor in must occur before her death

· Any activity a person is a key-actor in must occur within 200 years of her birth

All instances of Person have exactly one birth-date

This is harder than it looks. We might start by simply asserting that the slot is single cardinality by using the cardinality facet. But the meaning of that facet is “has at most one value.” The problem is: how do we assert that there is a value ?

One possible answer is

(defrange ?X :FRAME Person)

(defrange ?Y :FRAME Date)

(forall ?X (exists ?Y (birth-date ?X ?Y)))

That is, we define two variables: ?X and ?Y. ?X ranges over instances of Person. ?Y ranges over instances of Date. We then assert that associated to every ?X, there is a ?Y.

There are some interesting things to note here:

· We’ve translated slots into binary predicates. This is also true in general—any slot defined in a knowledge-base is a binary predicate that returns true in the appropriate situations.

· Class definitions also transform into single-place (unary) predicates. Any class defined in a knowledge-base defines a unary predicate which returns true for arguments which are instances of that class.

· We’ve used the facets to ensure that at most one value exists and written an assertion that ensures at least one exists

· The assertion we’ve written isn’t prescriptive—it gives Protege no hint as to what the birth-date is, but merely asserts that such a thing exists.

· There is nothing in the logic assertion that indicates ?Y is unique. That is, the same instance of Date could be the birth-date for many instances of Person. If we wanted uniqueness, we’d have to write something like:

(defrange ?X1 :FRAME Person)

(defrange ?X2:FRAME Person)

(defrange ?Y1:FRAME Date)

(defrange ?Y2:FRAME Date)

(forall ?X1 (forall ?X2 (=> (/= ?X1 X2)

(forall ?Y1 (forall ?Y2 (=> (and (birth-date ?X1 ?Y1)

(birth-date ?X2 ?Y2))

 (/= ?Y1 ?Y2)))))))

That is, if ?X1 and ?X2 aren’t equal (“/=”) then neither are their birth-dates.

An instance of Person has at most one death-date

This is simply setting the cardinality facet.

No Person lives more than 200 years

This is, again, somewhat complex. The correct statement is more like

If a person has both a birth-date and a death-date (e.g. the born-on and died-on slots are both filled), then the difference between the two dates ought to be less than 200 years.

Restating the assertion this way leads to problems, however:

1. How do we compute the “difference” between two instances of Date? Presumably the difference between two instances of Date is an instance of TimeDuration.

2. How do we say that once instance of TimeDuration is less than another instance of TimeDuration ?

More generally, what this is leading to is the point that there are three types of predicates and functions.

a. Built-in predicates and functions. Mostly dealing with the frame language (e.g., subclass-of or instance-of)

b. Predicates that come from the ontology—classes and slots define predicates. Single-valued slots also define functions (where the domain is the set of instances the slot is attached to, and value of the function is the slot value).

c. Other predicates and functions. That is, predicates that don’t come with the engine, and aren’t defined in the ontology.

For example, we could write the above assertion by using two functions and one predicate belonging to the third category. The functions are time-difference (which takes two instances of TimeInstant and returns an instance of TimeDuration) and create-time-duration (which takes a string and returns an instance of TimeDuration). And the predicate is shorter-duration (it takes two instances of TimeDuration and returns true if the first is shorter than the second). With these, we would then be able to write:

(defrange ?person :FRAME Person)

(forall ?person (=> (and (exists ?birthday (born-on ?person ?birthday)

 (exists ?deathday (died-on ?person ?deathday))

 (shorter-duration (time-difference (?deathday ?birthday)

 (create-time “-200----------“))))

which is exactly the assertion we want.

Any activity a person is a key-actor in must occur after her birth

Any activity a person is a key-actor in must occur before her death
Any activity a person is a key-actor in must occur within 200 years of her birth

These are interesting mainly because they imply the existence of another set of predicates: before, after, and during. Without extra predicates, there is simply no way to these assertions.

Comments on the Limitations inherent in Logic

A careful reading of the previous sections reveals several flaws in (our version of) mathematical logic.

The syntax is awful.

It’s very hard to formulate assertions in mathematical logic. Even beyond getting the syntax right, it’s very hard to be certain you’ve expressed the underlying assertion correctly. And assertions are hard to read as well. Furthermore, PAL compounds this problem by using a syntax called KIF (the Knowledge Interchange Format). KIF is an interchange format, designed to be easy for computers to parse. From the point of view of interoperability, and of making Protege fully compliant with the rest of the knowledge-representation community, KIF is clearly the right choice. It’s just not especially designed for humans to use.

This issue is (partially) addressed in the section “Notes on Integrating Constraints into Protege’s User Interface. The Protege solution, in a nutshell, is to use special purpose widgets to acquire specific types of assertions (the only general-purpose assertion widget is a textfield. But there are commonly used types of assertions for which we can use widgets as mediators. E.g., A human uses a user-friendly graphical user interface to enter a constraint, the widget translates what the user did into PAL assertions, and the engine uses those PAL assertions). But this is only a partial solution and power-users will probably have to have at least some understanding of mathematical logic (though not necessarily of KIF—it’s very easy to build a widget that translates between logical syntaxes).

It relies on additional predicates, functions, and Java code.

The only predicates the engine can compute on its own are the obvious ones that are derivable from single slots in the knowledge-base. For example, if the last-name slot on [Instance_00005] is filled out with the value “Fred”, then the engine will know that

(last-name [Instance_00005] “Fred”)

evaluates to true.

But most interesting knowledge-bases, especially the more general ones (such as DatesAndTimes.pprj) will need predicates and functions that are not derivable from the knowledge-base. The Protege solution, in a nutshell, is to use classes and instances corresponding to the predicates and functions. These instances describe the predicates and functions in various ways, including the location of the Java implementation that the engine needs. This issue is addressed more fully in the section “The Constraint Project.”

There’s no way to be certain an assertion is actually expressing what you want to express

This is the language translation issue mentioned earlier (when we noted it was logically correct for Mary to have two fathers). It’s not clear whether user-friendly widgets will help with this problem. On the one hand, the assumption behind using widgets is that the widgets are easier for users to understand and make it easier for users to correctly express a constraint. On the other hand, it means the user never actually sees the PAL (and thus introduces an additional distance between the user and the constraint).

The Language versus the Engine

The next question to address, once we have the basics of the language down, is “what does the engine do.” That is, the language allows users to make a set of assertions, declaring what ought to be true in the knowledge-base. The engine is a component that actually interprets these assertions and does things about them.

The question is: just what does the engine do ? And the answer is that there are four basic design questions that must be answered:

· How does the engine check the constraints ?

· Can the engine modify the knowledge-base ?

· What does the engine do when it detects a constraint violation ?

· How does the engine get invoked ?

We now proceed to examine these questions in a little more detail

How does the engine check the constraints ?

Protege knowledge-bases are directly translatable into assertions in first-order logic. And the axiom language is first-order logic. Which means that most of the techniques that logicians and computers scientists have developed can be applied. For the most part, the solutions lie somewhere between pure theorem-proving and pure model-checking.

· Pure theorem-proving. The knowledge-base is said to be correct if, when viewed as a logical theory, it is consistent.

· Pure model-checking. The knowledge-base is said to be correct if it is a model of itself (where the second “itself” is really “itself interpreted as a logical theory”).

The distinction is best illustrated by example: Suppose we are using the World History knowledge base and we add in two assertions from above—that birth-date is a single cardinality slot and that there is a value

(defrange ?X :FRAME Person)

(defrange ?Y :FRAME Date)

(forall ?X (exists ?Y (birth-date ?X ?Y)))

And suppose, further, that the instance of Person named “Julius Caesar” has not yet had its birth-date slot filled out. The theorem-proving approach will declare that the knowledge-base is correct because the associated logical theory is consistent.

The model-checking approach will declare that the knowledge-base is incorrect because the user has asserted that the slot must have a value, but has not directly asserted the value.

The basic tradeoffs between these two approaches are:

· Efficiency: Model-checking is usually much more efficient for simple assertions and less efficient for complex assertions. In addition, model-checking is deterministic (e.g., for a given assertion, you can compute an upper bound on the length of time required to check the assertion) whereas theorem-proving has no such upper bound.

· Correctness. These approaches have two different notions of what it means for an assertion to hold. Theorem-proving says that a knowledge-base is correct if the knowledge-base is consistent (more accurately—a knowledge-base is correct if it can’t be proven to be inconsistent). Model-checking says that a knowledge-base is correct if it is complete.

Can the engine modify the knowledge-base ?

Most of the time this is only appropriate for engines that incorporate some aspects of theorem-proving. Suppose, for example, that we had the following assertions (for readability, written in English).

Kha-tal was the last ruler of Atlantis

Everyone who ruled Atlantis lived in Atlantis

Atlantis sunk into the ocean on 10,000 BC

etcetera...

It may very well be that a theorem-prover based engine could deduce Kha-tal’s death-date (which was not directly asserted in the knowledge-base). At which point, it would probably want to set the slot directly (in effect, caching the results of a rather expensive deduction in the knowledge-base for future use).

The typical situation where modification is desirable is in a client-server model, where there is a knowledge-base server which is queried by client applications. In this model, the engine changing the knowledge-base amounts to a performance optimization with very little cost (the cost of storing a value).

What does the engine do when it detects a constraint violation ?

The real question here is: does the engine try to fix the knowledge-base ? Consider our example from much earlier, where the knowledge-engineer asserted that Julius Erving was involved in the Roman conquest of Egypt. Both model-checking and theorem-proving approaches should flag this as a constraint violation. At which point, the engine should, presumably, do something.

There are three basic things that can be done:

1. The error can be logged into a database (or file) or errors for later perusal.

2. The user-interface can somehow notify the user directly.

3. The error can be corrected (or the change which “causes” the error can be rejected).

The engine also has the option of some combination. For example: fix the error and then log both the error and the change for later perusal.

How does the engine get invoked ?

The engine needs to verify the assertions in the knowledge-base. It can do so in a variety of ways:

1. User-level batch-mode. The user explicitly signals that the constraint engine should be invoked.

2. Knowledge-base batch-mode. The application occasionally invokes the engine, based on some set of heuristics. For example: validating constraints when the application is idle, or when the knowledge-base is saved.

3. Constant running as the knowledge-base is edited.

The SMI Constraint Architecture

At this point in the document, we have spent a lot of time on the language, and a fair amount of time discussing implementation approaches and tradeoffs. The reason for this is simple: we are aiming at the following conceptual architecture:

[image: image6.png]
The key points of this picture are:

· The widgets only depend on the type of information being acquired, not the implementation engine.

· Once PAL is fully specified, the engine and the widgets are independent of each other (PAL is an interlingua for communication between them, but there are no code-level dependencies). In particular, different engines can be used for different purposes.

· Because we use frames to encapsulate assertions, the back-end (the knowledge-base server and the persistence layer) need not know anything about PAL. In particular, this facilitates adoption of other server and persistence formats.

· The predicates and functions that are added are added independently of the widgets or of the constraint engine. E.g. once a piece of Java code is written to implement a predicate, it can be used with any constraint engine.

· Project-specific pieces (e.g. widgets, predicates, and functions) will work with Protege’s “project inclusion” mechanism.

· Everything can evolve independently.

As part of this, SMI is building a default version of the constraint engine. The design decisions made in doing so are:

· How does the engine check the constraints ? The default engine will be entirely based on model-checking.

· Can the engine modify the knowledge-base ? Not at all. Protege is centered around knowledge-acquisition. All information the knowledge-base should be entered by the users.
· What does the engine do when it detects a constraint violation ? It will inform the user. It will not retract any slot assertions, nor will it prevent inconsistent information from being entered into the knowledge-base. Constraint violations will be reported to the user in a separate tab.
· How does the engine get invoked ? The initial implementation will be a user-level batch engine. That is, the user will have to specifically invoke the engine. Later implementations may move to a model of constantly running in the background.
The Constraint Project

The Constraint project (Pal.pprj) is a Protege-2000 project that contains class definitions associated to PAL. Any project that will use a constraint engine needs to include the constraints project (indeed, in future version of Protege, the PAL concept hierarchy will probably just be included in every project). In this section, we will discuss five of the key concepts from this project.

:Statement

[image: image7.png]
:Statement is an abstract class with 3 concrete subclasses: :Constraint, :RangeDefinition, and :SetDefinition. These three classes correspond to the three types of statements that can be made in PAL. Every PAL sentence which is part of the knowledge-base is actually associated to an instance of some subclass of :Statement. As such it has an annotation (containing historical information about the statement and what an English language translation of the statement) and then the actual sentence (in PAL syntax).

Storing assertions as frames has several advantages:

· It allows us to interoperate with many more frame-based knowledge representation systems. Protege is OKBC compliant and can save knowledge-bases to RDF. However, neither OKBC nor RDF specifies an axiom language. If we want to interoperate with those languages, and have our content as accessible as possible, we need to “framify
” everything.

· It gives us the ability to use the Protege GUI to browse the constraints. Since PAL statements are, to the core of Protege, simply instances of :Statement, any widget or browsing mechanism that has been developed to work with frames will work with constraints.

· It means that PAL statements are automatically included when projects are included, and with exactly the same semantics as ordinary frames.

:Constraint

[image: image8.png]
:Constraint is the main subclass of :Statement. It is anticipated that most PAL assertions will be instances of :Constraint. We are discussing :Constraint separately is to emphasize that we anticipate it being subclassed heavily we gain empirical knowledge of how PAL will be used in applications. :Constraint is a general class; all effective PAL constraints are instances of it. Subclassing :Constraint is the primary mechanism by which various types of constraints will be distinguished.

Among the possible reasons for subclassing are:

· Qualitative reasoning about constraints. For example, constraints might be broadly subdivided based on their complexity and the time it takes to evaluate them. An engine could then offer users options based on these characteristics (“Perform a quick check” versus “Perform a thorough validation of the knowledge base”). This would be especially useful for an engine which is continually running.

· Another possible subdivision of constraints is “local” (a constraint that doesn’t depend on the state of the entire knowledge base. E.g., “the area of a rectangle is equal to the product of the side time the height”) versus “global” (a constraint that depends on searching or scanning a large cross section of the knowledge base to find appropriate related objects).

· Project-specific types of constraints. Certain domains will lend themselves to certain types of constraints (E.g. “in this domain most of the constraints seem to be variants of this syntactical form”). In addition, separating constraints by projects allows for easier browsing. Note, however, that separating constraints by project does not allow an engine to ignore the imported constraints—sentences in PAL which are defined in an included project are still actually constraints across the entire project.

· To allow for special widgets. Protege allows custom widgets to be used to acquire specific classes. By subclassing :Constraint (for any of the above reasons). we also make it possible to build a specific widget specially tailored to acquire a particular type of constraint. While it is had to imagine a general constraint acquisition widget (other than a textfield), it is easy to imagine how specific classes of constraints could be acquired in a user-friendly manner.

· To simplify explanation. Specialized widget simplify acquisition and editing of constraints. But there are other aspects to the constraint user interface. For example, explaining to a user that a constraint has been violated. A dialog box with the text “Pal Sentence (forall ?X) does not hold in KB” is not a particularly useful user interface. But it is easy to imagine subclassing :Constraint to allow more focused messages.

:Relation

[image: image9.png]
:Relation is an abstract class with 2 concrete subclasses: :Predicate and :Function. Unlike :Statement (and its subclasses), which were explicit representations of assertions in PAL, :Relation (and its subclasses) are reifications of the way that users will extend PAL. The slots attached to :Relation are enough information for a constraint engine to perform some type checking (e.g. determine that the relation is, at the level of syntax, being used correctly) and then find the associated Java code (should it be necessary to evaluate the relation).

The slots are:

· annotation. This contains historical information e.g., who defined the relation and why).

· argument-definitions.

· arity. The number of arguments the relation takes.

· java-package-and-class. This must be supplied. It is a complete class name (e.g., enough information for the Java Classloader to find the associated class definition). The class so indicated must either extend GenericPredicate or GenericFunction (depending on whether the relation is a predicate or a function).
· logically-equivalent-expression. An incredibly formal comment. The engine doesn’t require this, but it could help in translating PAL assertions to other constraint languages.

· relation-name. The name of the relation.

:Predicate

[image: image10.png]
:Predicate is the main subclass of :Relation. It is anticipated that most extensions of :Relation will actually be additional predicates. It’s unlikely that users will subclass :Predicate, but there is a new, and in the distant future, incredibly important slot.

· properties. Points to a reified description of the extended properties of the predicate. We will discuss this in more detail below.

:PredicateProperties

[image: image11.png]
:PredicateProperties is a class which formally identifies many of the commonly referred to properties of a predicate. For example, transitivity.

A predicate is transitive if it is closed under composition. That is, if (pred A B) holds and (pred B C) holds, then (pred A C) must also hold.

The reason for including this class is to make it as simple as possible for people to develop new predicates. That is we plan to have a “predicate weaver” that takes a simple piece of Java code, and an instance of :PredicateProperties and produces the “real predicate” for use in evaluating constraints.

� Encapsulating reusable concepts in a separate project is a common modeling practice. Many knowledge-bases, in many different domains, have a notion of time. By separating these definitions, we enable the DatasAndTimes knowledge-base to be used (via project inclusion). In this case, we probably should have two other projects. One which defines concepts like “Event” and one which defines social constructs (like “Person” and “Group”). But that’s getting far too complex for our purposes.

� Note, however, that neither solution prevents our user from accidentally entering Julius Antony, a popular street-performer during Caesar’s reign, instead of Julius Caesar. There are limits to any constraint system.

� Interestingly enough, the formal term for “framify” is “reify.” Which is bad Latin for “thingify.”

_1009261566

_1009270083

_1009280793

_1009280950

_1009280952

_1009280822

_1009280712

_1009261664

_1009198199

_1009198527

_1009197458

