11th Protégé Conference
2009
Amsterdam
Netherlands

A great year for Protégé

- 11th great Protégé Conference
- 21st anniversary of PROTÉGÉ I
- 123,612 Protégé registrations
- Major development activities shifting from Protégé 3 to Protégé 4
Lots of new stuff happening to Protégé

- Even more performance enhancements
- New features that facilitate collaboration
- New Web-based version for Protege
- Amazing new plug-ins for
 - Rules
 - Spreadsheets
 - Cognitive support
- More integration with technology from the National Center for Biomedical Ontology
- All the work that we will hear about for the first time at this conference!

Protégé at 21

Protégé no longer gets carded

Mark A. Musen
Stanford Center for Biomedical Informatics Research
The Protégé ontology editor

- Free, open source ontology editor and knowledge-base framework
- Support for different:
 - ontology languages (OWL, RDF(S), Frames)
 - backends: Database, XML, CLIPS, etc.
- Strong user community: more than 123K downloads
- Used widely in academic, government, and industry

http://protege.stanford.edu

PROTÉGÉ-I was build for a different world

- No Web
- No “agents”
- No notion of ontologies as engineering artifacts
- No standard languages for knowledge representation
- No significant interest in description logic
- Just tons of people trying to build rule-based expert systems—that were failing
Sample MYCIN Rule

PREMISE: (\(\text{AND}\)
 (SAME CNTXT GRAM GRAMPOS)
 (SAME CNTXT MORPH COCCUS)
 (SAME CNTXT CONFORM CLUMPS))

ACTION: (CONCLUDE CNTXT IDENT STAPHYLOCOCCUS TALLY 700)

IF: 1) The gram stain of the organism is grampos
 2) The morphology of the organism is coccus
 3) The conformation of the organism is clumps
THEN:
 There is suggestive evidence (.7) that the identity of the organism is staphylococcus

Backward chaining in MYCIN:
Determining the value for REGIMEN
Consider this rule …

IF: (1) A “Complete Blood Count” test is available
 (2) The White Blood Cell Count is
 less than 2500

THEN:

The following bacteria might be causing infection:
 E. coli,
 Pseudomonas aerugenosa
 Klebsiella-pneumonia

What is implicit in this rule?

• “White Blood Cell count less than 2500”
 is-a-subclass-of “immunosuppressed patient,” which is-a-
 subclass-of “compromised host”
• E. coli, Pseudomonas, and Klebsiella are instances of
 “gram negative rod,” which is-a subclass-of “bacterium
 normally found in the gut”
• Unless a Complete Blood Count test has been ordered, it’s
 pointless to ask the value of the White Blood Cell Count
 (White Blood Count is-a-part-of a Complete Blood Count)
Some other screening clauses in MYCIN

- If the patient has undergone surgery and the patient has undergone neurosurgery, then …
- If the patient is older than 17 and the patient is an alcoholic, then …

Screening clauses coerce the system to ask questions in a certain way, while obscuring the knowledge that caused the clauses to be created in the first place.

Why rule-based systems failed

- A few hundred rules were barely manageable; a few thousand rules were impossible to keep straight.
- Developers “programmed” the systems in nonobvious ways, by tinkering with the order of rules and of clauses
- Developers could rarely tell by inspection how any element of the system contributed to problem solving
Heuristic classification
in MYCIN (after Clancey)

<table>
<thead>
<tr>
<th>Feature Abstraction</th>
<th>Solution Refinement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compromised host</td>
<td>Gram-negative infection</td>
</tr>
<tr>
<td>Immunosuppressed</td>
<td>Pseudomonas</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>E. coli</td>
</tr>
<tr>
<td>Alcoholic</td>
<td></td>
</tr>
<tr>
<td>WBC < 2.5</td>
<td></td>
</tr>
</tbody>
</table>

Conceptual building blocks for designing intelligent systems

- **Domain ontologies**
 - Characterization of concepts and relationships in an application area, providing a domain of discourse

- **Problem-solving methods (PSMs)**
 - Abstract algorithms for achieving solutions to stereotypical tasks (e.g., constraint satisfaction, classification, planning, Bayesian inference)
For MYCIN, those building blocks would be …

1. An ontology of infectious diseases
2. A problem-solving method that can use the ontology to identify likely pathogens and to recommend appropriate treatment

Common KADS

- Result of nearly 20 years of collaborative research in the European Union
- Centered at University of Amsterdam, with dozens of other partners
- Applies principled, software-engineering approach to development of intelligent systems
- De facto software-engineering standard for building intelligent systems
Conceptual models and design models in CommonKADS

Analysis space Design space

Conceptual Model Design Model

Data Code

System realization

When building systems from ontologies and PSMs …

Conceptual model

Software Building blocks

Design model

PSM

Implemented system

Software building blocks and conceptual building blocks can be identical!
Mapping domain to PSM explicitly

Each mapping is itself an instance of an ontology of possible mapping types

User interface from the workstation version of ONCOCIN (ca. 1986)
A rule from an early version of ONCOCIN (ca. 1980)

RULE075

To determine the attenuated dose for drugs in MOPP chemotherapy or for all drugs in PAVe chemotherapy

IF:

1) This is the start of the first cycle after a cycle as aborted, and
2) The blood counts do not warrant dose attenuation

THEN:

Conclude that the current attenuated dose is 75% of the previous dose

Episodic Skeletal Plan Refinement was the Problem Solver used with PROTÉGÉ I
PROTÉGÉ I construed problem solving as the interplay of

- A hierarchy of **plans** that might be invoked
- **Actions** that could affect the way in which the planning would take place
- **Data** input from the environment that might directly or indirectly predicate the plans to be involved or the actions to take

The Next Step: PROTÉGÉ-II

- Made ontologies explicit with a separate ontology editor
- Supported arbitrary problem-solving methods—dropped the dependence on ESPR
- Allowed sophisticated facilities for generating knowledge-acquisition interfaces based on the domain ontology
- Took advantage of sophisticated NeXTSTEP object-oriented UI system
- First tool to use the Protégé nerd icon!
A clinical algorithm in PROTÉGÉ-II
Episodic Skeletal Plan Refinement was the Problem Solver used with PROTÉGÉ I

Protégé/Win

Built for the Masses!

- Moved Protégé to a widely available platform—just in time!
- Enabled integrated ontology editing and forms layout—eliminating the need for batch forms generation
- Marked the start of a growing Protégé user community
A Protocol Ontology in Protégé/Win

Protégé/Win KA tool
Episodic Skeletal Plan Refinement was the Problem Solver used with PROTÉGÉ I

Reuse of the *propose-and-revise* method

- Determination of ribosome structure from NMR data can be construed as constraint satisfaction
- Mapping propose-and-revise to a new domain ontology automates the structure-determination task
Use of *propose-and-revise* to solve the ribosome problem

Propose and Revise

Method Input Ontology (e.g., constraints and fixes)

Method Output Ontology (e.g., proposed design)

Domain Ontology (e.g., data on atom locations, distances between helices)

The Next Step: Protégé-2000

- Ray Fergerson rewrote the whole thing in **Java**
- We provided support for the (then) OKBC frame standard
 - Metaclasses
 - Slots as first-class entities
 - Axioms
- We created an open, **plug-in** architecture
Perot Systems Organizational Model in Protégé-Frames

The NCI Thesaurus in Protégé-OWL
By now, everyone was concentrating on ontologies

- The world rediscovered description logic
- The emphasis became building better and better knowledge representations
- Ontologies alone were great for question-answering tasks
- Tools for building ontologies (including Protégé) flourished
- And people became less focused on problem solving

The Era of Big Ontologies was Upon Us

- Foundational Model of Anatomy
- NCI Thesaurus
- Gene Ontology
- Word Net
- SNOMED-CT
- OBI
Episodic Skeletal Plan Refinement was the Problem Solver used with PROTRÉGÉ I
How can we evaluate ontologies independent of problem solvers?

- How do we know whether they make the “right” distinctions?
- How do we know where the gaps are?
- How do we find inconsistent granularity?
- How do we know what our ontologies are actually competent at describing?

BioSTORM: A Prototype Next-Generation Surveillance System

- Developed at Stanford, initially with funding from DARPA, now from CDC
- Provides a test bed for evaluating alternative data sources and alternative problem solvers
- Demonstrates
 - Use of ontologies for data acquisition and data integration
 - Use of a high-performance computing system for scalable data analysis
Biosurveillance Data Sources

Ontology

Ontology defines how data should be accessed from the database

<table>
<thead>
<tr>
<th>LOINC Term(s)</th>
<th>Property Measured</th>
<th>Kind-of-Property Measured</th>
<th>Time Aspect of Mea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Status</td>
<td>Categorical Measure</td>
<td>Point_in_Time</td>
</tr>
<tr>
<td>Score</td>
<td>Score</td>
<td>Percent</td>
<td>Point_in_Time</td>
</tr>
<tr>
<td>Side</td>
<td>Side</td>
<td>Categorical Measure</td>
<td>Point_in_Time</td>
</tr>
<tr>
<td>X-coordinate</td>
<td>X-coordinate</td>
<td>Real Number</td>
<td>Point_in_Time</td>
</tr>
<tr>
<td>Y-coordinate</td>
<td>Y-coordinate</td>
<td>Real Number</td>
<td>Point_in_Time</td>
</tr>
<tr>
<td>Incident ID</td>
<td>Incident_ID</td>
<td>Text</td>
<td>Point_in_Time</td>
</tr>
<tr>
<td>Date</td>
<td>Date_of_Visit</td>
<td>Date</td>
<td>Point_in_Time</td>
</tr>
<tr>
<td>Site</td>
<td>Hospital_Address</td>
<td>Text</td>
<td>Point_in_Time</td>
</tr>
<tr>
<td>Area</td>
<td>Area_Code</td>
<td>Real Number</td>
<td>Point_in_Time</td>
</tr>
<tr>
<td>Census Block Group</td>
<td>Census_Block_Group</td>
<td>Categorical Measure</td>
<td>Point_in_Time</td>
</tr>
<tr>
<td>Type</td>
<td>Code_Call_Type</td>
<td>Categorical Measure</td>
<td>Point_in_Time</td>
</tr>
</tbody>
</table>
BioSTORM Data Flow

Data Source Ontology

Heterogeneous Input Data

Mapping Ontology

Semantically Uniform Data

Control Structure

Customized Output Data

Epidemic Detection Problem Solvers

Hierarchy of PSMs in BioSTORM

Data Broker

Obtain Current Observation

Database Query

Aberrancy Detection (Temporal)

Compute Expectation

Constant (history based)

Empirical Forecasting

Obtain Baseline Data

Evaluation Data

Estimate Model Parameters

Obtain Baseline Data

Obtain Current Observation

Database Query

Hierarchical PSMs in BioSTORM

Compute Test Value

Cumulative Sum

Mean, SD:

Trend Estimation

Outlier Removal

Mann, Whitney

ARIMA Model Fitting

GLM Model Fitting

GARCH Forecasting

ARIMA Forecasting

EWMA

Exponential Smoothing

Nonlinear Smoothing

KLFM Forecasting

ARIMA Forecasting

P-Value

Z-Score

Residual-Based

Bonferroni

Layered Alarm
There is a need for balance

- Better languages and tools for building domain ontologies
- Better languages and for designing and implementing problem-solving methods
- Better methods and tools for bringing these components together
- Building systems with *use cases*—not ontologies—as the driving component
When building systems from ontologies and PSMs …

Software building blocks and conceptual building blocks can be identical!