
A Protégé 4 Backend for Native

OWL Persistence

June 25, 2009

Jörg Henss

Joachim Kleb

Stephan Grimm

FZI Research Center for Information Technology

at the University of Karlsruhe

Germany

WIR FORSCHEN FÜR SIE

Motivation

 Why do we need a Persistence Backend for Protégé 4?

• Storage

• Maintenance

• Collaborative Work

 Why do we need a new Persistence Backend for Protégé 4?

• Native support for OWL

• It was missing ;-)

Nativeness

 By nativeness we understand:

• Mapping OWL language constructs one-to-one to storage layer

 Triple Structure

• RDF-Store

• CLOS model

 Axiomatic view

• Restrictions, cardinalities

• OWL acts on objects not on nodes

o E.g. blank nodes are only recognizable via URI in RDF

• An object model for OWL is required

Schema Representation

 OWL as Objects

• Concepts, Individuals, etc.

 OWL-API as Object Model for OWL

• Java based API for OWL

• Maintained by University of Manchester

• OWL 2 ready

• Protégé 4 is based upon

 Use of Object-Relational mapping for persistence

• Stores object information in database

• Restriction on necessary parts for Ontology Persistence

o E.g. minimisation of redundancy

 Possible Strategies

• One Java Class One Table

• One Inheritance Tree One Table

• One Inheritance Path One Table

• Mixed forms

 Our Strategy

• Mixed form

o One class one table

o One inheritance tree one table

• Results in 56 tables

5

Mapping Paradigms

Relational Model

Complex Classes
common

superclass

Complex Classes

URI
information

Complex Classes

Conjunction/
Disjunction

Complex Classes

Inverse

Complex Classes

Enumerations

Complex Classes

Restrictions

ABox

Instances

ABox

Instance
Affiliation

ABox

Assertions

Comparison to other systems

 Most systems focus on optimisation techniques for reasoning. In

contrast we focus on direct manipulation.

 No in-Memory parsing necessary.

 Highly similar to other systems on schema level, e.g. SOR.

 Direct manipulation

• Complete ontology is editable on database level.

 Instance information persistence is similar to triple stores

 Ensures all functionalities of OWL-API

OWL-API

Database
Persisted Ontology

OWL-API

Creation &
Loading

OWL-API

Persisting

OWL-API

Convenience
Class

21

Architecture

Benefits

 Minimisation of necessary joins compared to triple stores

• Better retrieval

 Management facilities of RDBMS

• Query optimisation

• Transactions

• Caching, etc.

 OWL 2 compatible

• Mapping approach also usable for another API

 Modularisation via owl:import

• Several ontologies possible

 Seamless integration into the OWL-API

• Non-invasive

Seamless Protégé Integration

 Open Dialog

• Similar to Protégé 3x

• Additional dialect

Protégé Integration

Conclusion

 No change in interaction regarding the in-Memory
implementation of Protégé (as well as in interaction
with the OWL-API)

 No changes on the OWL-API object
implementations (non-invasive)

 Project files desirable

 Still Prototype

 Download address

• http://www.fzi.de/downloads/ipe/owldb.zip

 Part of the German Theseus Research Project

http://www.fzi.de/downloads/ipe/owldb.zip

Questions?

26

