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Motivation

 Why do we need a Persistence Backend for Protégé 4?

• Storage

• Maintenance

• Collaborative Work

 Why do we need a new Persistence Backend for Protégé  4?

• Native support for OWL

• It was missing ;-) 



Nativeness

 By nativeness we understand:

• Mapping OWL language constructs one-to-one to storage layer

 Triple Structure

• RDF-Store

• CLOS model

 Axiomatic view

• Restrictions, cardinalities

• OWL acts on objects not on nodes

o E.g. blank nodes are only recognizable via URI in RDF

• An object model for OWL is required



Schema Representation

 OWL as Objects

• Concepts, Individuals, etc.

 OWL-API as Object Model for OWL

• Java based API for OWL

• Maintained by University of Manchester

• OWL 2 ready

• Protégé 4 is based upon

 Use of Object-Relational mapping for persistence

• Stores object information in database

• Restriction on necessary parts for Ontology Persistence

o E.g. minimisation of redundancy



 Possible Strategies

• One Java Class One Table

• One Inheritance Tree One Table

• One Inheritance Path One Table

• Mixed forms

 Our Strategy

• Mixed form

o One class one table

o One  inheritance tree one table

• Results in 56 tables
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Mapping Paradigms



Relational Model
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Comparison to other systems

 Most systems focus on optimisation techniques for reasoning. In 

contrast we focus on direct manipulation.

 No in-Memory parsing necessary. 

 Highly similar to other systems on schema level, e.g. SOR.

 Direct manipulation

• Complete ontology is editable on database level.

 Instance information persistence is similar to triple stores

 Ensures all functionalities of OWL-API 



OWL-API

Database
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Architecture



Benefits

 Minimisation of necessary joins compared to triple stores

• Better retrieval

 Management facilities of RDBMS

• Query optimisation

• Transactions

• Caching, etc.

 OWL 2 compatible

• Mapping approach also usable for another API

 Modularisation via owl:import

• Several ontologies possible

 Seamless integration into the OWL-API

• Non-invasive



Seamless Protégé Integration

 Open Dialog

• Similar to Protégé 3x

• Additional dialect



Protégé Integration



Conclusion

 No change in interaction regarding the in-Memory 
implementation of Protégé (as well as in interaction 
with the OWL-API)

 No changes on the OWL-API object 
implementations (non-invasive)

 Project files desirable

 Still Prototype

 Download address

• http://www.fzi.de/downloads/ipe/owldb.zip

 Part of the German Theseus Research Project

http://www.fzi.de/downloads/ipe/owldb.zip


Questions?
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