Frames and OWL
A principled analysis

Alan Rector
School of Computer Science / Northwest Institute of Bio-Health Informatics
rector@cs.man.ac.uk

with special acknowledgment to the CO-ODE & Protege Teams & Natasha

www.co-ode.org
www.clinical-escience.org
www.opengalen.org
Protege-OWL

- Original goal
 - A synthesis of frames and OWL
 - Seemed plausible, but has so far produced two parallel approaches
 - Not easy to move between frames and OWL
 » Why?
 » Is a synthesis possible?
 - Analysis
 - A modest proposal
Frames & OWL: Look roughly similar
...but, more different than they look

• An ontology in Frames is...
 - A set of “templates
 • A meta-model for the ontology
 - Statements are functions on the information objects - the frames
 » Disguised meta-statements
 • Classes (and meta-classes) are first class entities
 • Everything asserted

• An Ontology in OWL is...
 - A set of definition and constraint (”restriction”) axioms
 • A model of the domain
 - Statements about the domain entities - the things in the world
 » Disguised first order axioms
 • All members of this class ...
 • Anything that satisfies these conditions... is a member if this class
 • Classes cannot be referred to directly
 - without going into OWL-full
 • Require a reasoner to interpret their consequences
 - Asserted and inferred models
 » annotation provides a weak mechanism for meta-data
Consequences...

- Many differences follow
 - Differences in structure
 - Differences in what can be asked and answered

- Consider our simple ontology
 - Frames
 - Animal
 - Mammal
 - Lion
 - African_lion
 - African_animal
 - African_lion

- Individuals
 - Elsie the lioness
Permission vs Prohibition

- **Frames**
 - Everything is forbidden until it is permitted
 - by an entry in a template

- **OWL**
 - Everything is permitted until it is forbidden
 - by a constraint (restriction) axiom
 - (or the implications of several axioms)
Enumeration vs Composition

• Frames
 - All classes and individuals must be enumerated manually in advance
 • Must make “African animal”, “Indian animal”, “Sumatran animal”, “North American animal”, etc. all explicitly
 - Can lead to combinatorial explosions
 » The “exploding bicycle”
 - Leads to maintenance issues
 » Lion hierarchy and geographic region hierarchy must both be maintained in step
 • Duplication of effort
 • Errors - poor software engineering

• OWL
 - Definitions allow new classes to be composed from old
 • Create animal with whatever ranges are needed
 - The animal hierarchy will change automatically with the geography hierarchy
 • Supports notion of a “normalised ontology”
Meta-Model vs Annotations

• Frames
 – Metadata is first class data
 • No difference in principle between classes and individuals
 – Everything is an instance of some class
 – Uniform mechanism for information about classes and members of classes
 » dc:author can be just an ordinary slot

• OWL
 – Metadata is annotation or (“puns”)
 • Annotation properties
 – dc:author must be an annotation property
 but requires special care
 » Not recognised by the reasoner
 • Many seemingly arbitrary restrictions

• Puns
 – a new OWL 1.1 construct
 » No experience yet - Much controversy
Closed vs Open Worlds / Unique name assumption vs differentiating axioms

• Frames
 – Assume that all that is relevant is represented
 • Failure to find something is taken as negation
 – No explicit negation
 » “Negation as failure”
 – If two entities have different names they are different
 • All individual are distinct
 • Classes are assumed disjoint unless they have a common subclass

• OWL
 – Assume that anything consistent with the axioms may be true
 • Failure to find something just means we don’t know
 – Explicit negation
 » “Negation as impossibility”
 – Any two individuals may be the same;
 Any two classes may overlap
 • Unless there are explicit differentFrom() or disjoint() axioms
Explicit individuals vs Under-specification

- **Frames**
 - To say that “Elsie has a cub” we must create an individual “Lion cub” and make it Elsie’s child
 - $(multivalued-slot \text{has_child} (\text{value instance_of_lion_1234567}))$
 - Only what is explicitly represented exists
 - “Skolem Constants”

- **OWL**
 - To say that “Elsie has a cub” we say that “There is something that is Elsie’s cub”
 - Elsie has_child SOME Lion
 - We don’t have to represent the cub explicitly
 - Can also further describe it
 “Elsie has a cub that has a cub”
 - Elsie has_child SOME (Lion THAT has_child SOME Lion)
Local vs global inference

• Frames
 - All inference is local
 • To the class, its superclasses, subclasses, and instances
 - effects easy to predict
 • “Meaning” of the ontology can be read off the class hierarchy without inference.

• OWL
 - All axioms are global
 • A class can be affected by axioms from the whole ontology
 - Large animals with claws are dangerous.
 Lions are large and animals and have claws.
 Elsie is a Lion
 Therefore Elsie is a dangerous animal
 • Meaning of the ontology can only be determined after using a “reasoner”
 - The meaning can (almost) be read off the inferred hierarchy
 » Can export the inferred hierarchy
Acquisition vs Inference

• Protege
 – Optimised for knowledge acquisition
 • Evolved from knowledge acquisition systems
 – Everything you need to know to avoid errors is transparently visible
 – For individuals, what is needed is usually in a form

• OWL
 – Optimised for inference
 • Evolved from logic representations and theorem provers
 – What you need to know must be is opaque and must be inferred
 » Protege-frames-like forms are not currently available
 • (but we are working on it)
What questions can be asked? How can they be or answered?
What are the kinds of Lion? What are lions a kind of?

- **Frames**
 - Look up and down the (asserted) hierarchy
 - (there is no inferred hierarchy)

- **OWL**
 - Look up and down the inferred hierarchy
 - The asserted hierarchy is not enough
 - African lions will be found to be African Animals
What can be said about Lions? a lion? “Sanctioning”

- **Frames**
 - “Slot attachment” is a formal operation
 - Can ask what *can* be said
 - What can’t be said is implied by what isn’t in the template
 - Look at the template - including ancestor classes’ templates
 - Usually presented as a “form”

- **OWL**
 - “Slot attachment” is not in the language
 - Can ask what *cannot* be said but not what can be said
 - Except as the difference
 » Not built into reasoners
 - “Non-standard reasoning”
What’s true of all lions?

• Frames
 – Value of a slot
 • (multi-slot has_mother (allowed-classes Lion))
 – The slot has_mother must be filled by something from the class Lion

• OWL
 – A restriction
 • has_mother SOME Lion
 – All lions have a lion and only a lion as a mother
What is false of all lions? A lion?

- **Frames**
 - No way to express negation explicitly
 - Only ask what is not stated to be true
 - Or sometimes use max cardinality 0

- **OWL**
 - What can be proved false of all lions
 - NOT (has_diet SOME Herbivorous)
 - All lions have non-herbivorous diets
 - ... or it might have been proved through nonlocal axioms
 - Or prove it

- PROPERTY has_diet FUNCTIONAL
 Diet ← [Herbivorous Carnivorous] allDisjoint
 Lion → has_diet SOME Carnivorous
What’s false of all lions?
Prior constraints vs post hoc restrictions

• Frames
 – Constraints limit what can be entered
 • Errors flagged at data entry
 – (multi-slot has_mother (allowed-classes Lion))
 » The slot has_mother must be filled by something from the class Lion

• OWL
 – Restrictions constraint what is consistent
 • Anything can be entered
 – but violations will be flagged as inconsistent when the reasoner is run
 – Lion has_mother ONLY Lion
What is unknown about all lions? a lion? What is missing?

- Frames
 - Missing: A mandatory slot without a value
 - Will cause an error
 - On an individual the form will be bordered in red
 - Unknown: ??ill defined
 - An optional slot without a value?
 - No - most queries will return “no” or equivalent
 - closed world - what is represented is all there is

- OWL
 - Unknown: More than one option is satisfiable
 - Cannot be proved either true or false
 - Missing: ??Usually ill defined?
 - A “SOME” restriction without a value?
 - No, a value will be inferred to exist
 - Only if a required value could not exist
 - An organism has exactly 2 parents; one mother and one father.
 » Smith has two female parents. Smith’s father is “missing”
What kinds of animals live in Africa?

- **Frames**
 - [Look down the subclass hierarchy from African_animal](#)
 - And perhaps check by running a query defined outside the ontology

- **OWL**
 - [Run the reasoner -](#)
 - then look down the *inferred* subclass hierarchy from African_animal
 - Any animal that has_range in Africa will be classified under African_animal
 - Whether or not it is asserted explicitly.
What is typically true of lions? “Lions are typically tawny”

- **Frames**
 - Traditionally - what frames were about - Defaults with over-riding
 - “Tweety the ostrich”
 - In Protege-frames
 - Can set a default value
 - Can over-ride it for any one individual
 - Cannot easily over-ride it for some subclass and its subclasses

- **OWL**
 - All statements are universal
 - Can only weaken the premise
 - “All birds except members of the ostrich and penguin families fly”
 - Soon becomes difficult to maintain
How do I refer to lions in descriptions like “Books about lions”?

- **Frames**
 - By using the class Lion as a value
 - e.g. (...skos:subject (value Lion))

- **In OWL**
 - Can refer to “books about some lion(s)”
 - Cannot refer to “books about Lion” in OWL-DL
 - Nothing can be both a class and an individual in OWL-DL
 - (Although the same name can be used for a class and an individual in OWL 1.1 - a “pun”)

- **NB usually the librarian’s intended meaning of “books about lions” is**
 - “Books about lions OR books about some Lion(s)”
Who is the author of the class Lion?
Editorial meta-statements about the ontology

- **Frames**
 - A statement about the frame for the class Lion
 - An “own slot”
 - Not inherited because it is about the frame itself
 - A statement like any other in the ontology
 - Classes are just instances of the class Class

- **OWL**
 - An annotation on the class for Lion
 - Only loosely linked to the ontology
 - and severely restricted
 - Cannot be a normal statement in the ontology
 - Puns may be a work around in OWL 1.1
 - but very weak
Meta-data and Annotations

- Simple cases
 - Good enough
- Language, provenance, versioning, ...
 - Need richer model than OWL allows
 - Not viable for higher order information
Are lions an endangered species? Higher order statements about the domain

- Frames
 - A statement about the frame for the class Lion
 - No way to distinguish from editorial domain knowledge
 - No way to tell if a statement about a class is about the representation or the thing represented
 » A “use-mention” error

- OWL
 - No real equivalent - nasty hack:
 - All lions have the property of being members of an endangered species
 - Higher order reasoning requires OWL-Full
 » But still does not distinguish between editorial metadata and higher order information
Summary

• **Natural in frames - rich meta modelling & knowledge acquisition**
 - What is it sensible to say - “sanctioning”
 • explicit slot attachment
 - Metaclasses, reference to subjects, etc.
 - What’s missing, incomplete

• **Natural in OWL - rich first order inference**
 - Composition and definition
 - Global inference
 - Existential quantification & underspecification

• **Natural in both**
 - Subclass/superclasses, Inheritance (without exceptions)

• **Natural in Neither**
 - Typical information / “Defaults with exceptions”
Effect on the experience

- **Frames**
 - *Immediate feedback*
 - Everything you need to know is transparently visible
 - Analogous to scripting / interpreted environments

- **OWL**
 - *Delayed feedback*
 - What you need to know can only be determined by classification
 - Analogous to a compiled language / batch environment
A possible synthesis

- **Requirements**
 - Composition and rich first order inference from OWL
 - Metamodelling and transparency from frames
 - Clear simple query for “what can I say about ...”
 - Separation of editorial metadata and higher order information

- **Method**
 - Multiple layered models
 - Domain Ontology
 - Meta-ontology - representation of the ontology artefact
 - Higher order domain ontology - the categories represented by the ontology
Possible Synthesis

Meta model of representation:
({rep:Animal} OR is_subclass_of rep SOME {rep:Animal}) ➔
attached_property VALUE rep:has_mother

Annotation:
rep:Lion ➔
author VALUE rector

Domain Ontology
(subj:Lion has_CITES_status SOME Endangered)

Domain Ontology
(subj:Endangered_species ⇔
subj:Species AND
has_CITES_status SOME Endangered)

Generate derived
is_subclass_of hierarchy

ABox: rep:Lion
TBox: rep:ALRClass
rep:Meta Ontology

TBox: {rep:Lion}
ABox: rep:Lion, rep:Elsie

ABox: Elsie
TBox: rep:ALRClass
rep:Meta Ontology

ext:myBook skos:subject VALUE subj:Lion
Summary

- *Frames* are Templates
 - *OWL* is a set of axioms

- *Frames* provide rich meta representation
 - *OWL* provides rich first order representation plus composition, inference, and normalisation

- *Frames* are closed world & Uniquely Named
 - *OWL* is open world and must have differentiating axioms

- *Metadata* is about representations
 - *Higher order information* is about the domain
 - and probably the right thing to use for “subjects” (SKOS)

- A *synthesis* ought to be possible
 - Now: messy but relatively quick with current technology
 - Future: significant problems to be solved for fully logically sound solution