

DataMaster – a Plug-in for Importing Schemas and Data
from Relational Databases into Protégé

Csongor Nyulas, Martin O’Connor, Samson Tu

Stanford Medical Informatics,

Stanford University School of Medicine, Stanford, CA 94305
csongor.nyulas<at>stanford.edu

Abstract: We present DataMaster, a Protégé plug-in that supports the importing of schema structure and
data from relational databases into Protégé. The plug-in supports both OWL and frames-based
ontologies and can be used with any relational database with JDBC/ODBC drivers.

Keywords: DataMaster, Protégé plug-in, Protégé OWL, tab widget, relational database, schema import,

relational-to-OWL

1 Introduction
Importing data from relational databases into ontologies is frequently required, especially when an ontology is used
to describe semantically the data used by a software application. Another growing category of applications needs
database-ontology integration and/or interoperation, where a mapping between the database schema structure and
ontology concepts is the main focus. In the latter cases the import of the data residing in relational databases may not
be necessary or desired.
To meet these requirements, we have developed DataMaster, a Protégé plug-in that allows the user to import in a
configurable way a relational database structure into a Protégé-OWL or Protégé-Frames ontology. The plug-in also
supports the optional importing of table contents. The development of DataMaster was necessary, because existing
plug-ins developed for importing data from relational databases into Protégé, such as DataGenie [1], do not support
Protégé-OWL, schema-only import, and other import configurations available in DataMaster.
The DataMaster plug-in has been developed in the BioSTORM [2] project, which aims to develop a computational
test bed that can draw on real-world data sources and that will allow users to configure, run, and evaluate alternative
surveillance methods. The plug-in represents an important part of the semantic data-access layer, which annotates
and integrates disparate data sources into a semantically uniform data stream.
In the following sections, we will describe different ways of importing a database structure and its content into an
ontology using the DataMaster plug-in. Section 2 gives an overview of different ontologies for capturing the
structure of a database, which are supported by different import configurations of DataMaster. Section 3 gives a
short description of the DataMaster graphical user interface.

2 Ontologies for Describing Database Schemas
There are a variety of ways of describing the schema of a database in an ontology depending on the requirements of
an application. For example, some applications will only require an import of the
database content without needing a “live” connection to the database. In other
cases, the mapping between the database structure and the ontology elements is
more important, so that data reside in the database but are accessible to querying
or reasoning through an ontology layer. We have designed four ontologies (three
OWL ontologies and one Frames ontology) for describing database structures
that are suitable for different types of applications and use cases.

2.1 Schema Structure Ontology for Protégé-Frames
DataMaster may be used to import a relational database structure and the table
data into a Protégé-Frames ontology. The ontology for describing the database
structure (Figure 1) is the same as the one used by the DataGenie plug-in. All
imported database tables are defined as Protégé classes that are instances of the
Table Metaclass meta-class. Each column of the database table is
represented by a template slot added to the newly created table classes. The
column slots will have data types corresponding to the SQL types associated to
the database columns.

Figure 1. Database schema ontology
for Protégé Frames

If there are foreign keys defined between the database tables, for each foreign key an instance of the Foreign
Key class will be created that will be used to link the corresponding ontology classes.
It is also possible to import the data from the tables in the database: for each row in the table an instance of the table
class will be created, and the values of the own slots at these instances will be set with values contained in the table
row corresponding to the table columns. An extra slot of type instance will be created for each foreign key defined
in the table that will point to the instances corresponding to the referred rows.

2.2 Schema Structure Ontology for Database Tables as OWL Classes
One of our goals when designing the schema structure ontology in OWL was to be able to use DL reasoning on it.
This means that certain constructs used in the Frames approach (Section 2.1) had to be changed. However, certain
combination of import options will result in an OWL Full schema ontology.
The Protégé OWL schema ontology for importing tables as classes is the OWL version of the previously described
ontology for Protégé Frames. There are only a few differences:

- The imported classes will not be instance of a common meta-class, because it would make the ontology
OWL Full. Instead, all the template slots attached to Table Metaclass in the Frames ontology, have
been defined as annotation properties on the imported table classes.

- The property and class names from the Frames ontology are using the camel notation and the space
character in the class and property names have been avoided. E.g., hasForeignKeys instead of
Foreign Keys, ForeignKey instead of Foreign Key, etc.

- For easier navigation and performance reasons, we have introduced four additional object properties
attached to the ForeignKey class to refer the local and referenced table classes as well as the referring
and referred column properties.

2.3 Schema Structure Ontology for Database Tables as OWL Instances using Relational.OWL
Another way of representing the structure of a database in an OWL ontology is
the approach taken by Relational.OWL [3]. The ontology used by
Relational.OWL is shown in Figure 2. It defines four classes Database,
Table, Column and PrimaryKey. The instances of these classes and their
relationships can represent the schema structure of any relational database. One
of the available configurations of DataMaster is to import the database structure
as instances of the Relational.OWL ontology.
However, the Relational.OWL ontology is OWL Full, because Relational.OWL
defines the representation of the database column types by using the
rdfs:range property on the Column class, which makes the Column class
be an owl:Class and an rdf:Property at the same time. We have
provided in DataMaster two OWL DL modeling alternatives to the OWL Full
constructs in Relational.OWL for the representation of the column datatypes.
One modeling alternative is to attach a property hasXSDType to the Column
class. The second alternative is to define a class ColumnType and a property hasColumnType that relates a
Column instance to a ColumnType instance.

2.4 Schema Structure Ontology for Database Tables using meta-classes
In the Relational.OWL schema representation, the database tables are represented as OWL individuals of the Table
class. This representation is very useful if we are only interested in importing the database structure in the ontology
and not its data. This type of import is suitable for the case in which the data has to reside in the database but it can
be accessed from an ontology layer by means of an OWL-database bridge.
However, there are cases in which it is desirable to import also the database content into the ontology.
Relational.OWL provides this functionality by making the Table class a meta-class. Its instances corresponding to
the imported tables will be OWL classes and the rows in the database tables will be instances of the table classes. In
a similar way, the Column class will be a subclass of owl:DatatypeProperty and its instances corresponding
to the database columns will be assigned to the row instances with values from the database.

3 The DataMaster user interface
A screenshot of the DataMaster plug-in is shown in Figure 3. The graphical interface consists of several sub-panels.
In the upper left connection panel the user can select the database connection type (ODBC or JDBC), specify the
JDBC or JDBC/ODBC driver, the data source name, the user name and the password to access the database.
Pressing the Connect button will open a JDBC connection to the database and will activate the table selection panel

Figure 2. Relational.owl ontology

and the preview panel, where the user can select the tables to be imported into Protégé and can get a preview of the
selected tables. The superclass selector panel allows the user to select superclass(es) for the imported table classes.
In this way, if the importing ontology already defines a class to represent database tables, the user can select this
class in the superclass selector panel, and all the imported classes will be created as subclasses of that class.

In the upper right panel, the user can specify some important additional import options:
- By selecting one of the “Import location” radio buttons and check boxes, the user can specify the physical

location of the imported OWL classes and individuals. The import location can be the currently loaded
ontology, or a separate ontology, which will be imported in the current ontology. If the user chooses to
import the classes in the current ontology, he or she may choose to use a different namespaces for the
imported classes. These options are currently not available for Protégé-Frames.

- The option “Import tables as: classes and/or instances”, available in Protégé-OWL, allows the user to
choose between one of the ontology representations of the database structure described in Section 2 that
will be used in the import.

- The checkbox “Include table name in column name” is an option available when database tables are
imported as classes. If selected, the column property names will be prefixed with the table name.

- If the table classes are to be imported as Relational.OWL instances, the data type of a column can be
represented in one of the three ways outlined in Section 2.3.

- By selecting the “Import table content” checkbox the table data will be also imported. Note that
importation of large databases may require increasing the Java VM heap size available for Protégé.

4 Conclusion
In this paper we have presented the DataMaster Protégé plug-in, which allows a user to import schema structures
and data from relational databases accessible through JDBC. We have presented the four ontologies that can be used
to represent the database structure and the table data and finally we have given a short overview of the different
import options available in the DataMaster plug-in.

5 Acknowledgements
This work was supported by the Centers for Disease Control and Prevention under grant number SPO-34603. We
would also like to acknowledge the DataGenie plug-in, parts of which were adopted by DataMaster.

References
[1] DataGenie wiki page: http://protege.cim3.net/cgi-bin/wiki.pl?DataGenie
[2] M. Crubézy, M. J. O'Connor, D. L. Buckeridge, Z. S. Pincus, M. A. Musen. Ontology-Centered Syndromic
Surveillance for Bioterrorism. IEEE Intelligent Systems, 20(5):26-35. 2005
[3] C. P. de Laborda, S. Conrad. RelationalOWL - A Data and Schema Representation Format Based on OWL.
Conceptual Modelling 2005, 43:89-96. 2005

Figure 3. Screenshot of the DataMaster plug-in

