Modularisation & Normalisation of Ontologie

Alan Rector & Julian Seidenberg
School of Computer Science, University of Manchester
Northwest institute of BioHealth Informatics
rector@cs.man.ac.uk
www.clinical-esciences.org
www.co-ode.org

with thanks to the protégé team
Why modularise an ontology?

- **Manageability**
 - Independent development of modules
- **Re-use**
 - Most applications require only part of another ontology
 - How many applications need 65K anatomical entities
- **Abstraction**
 - Use only as much detail as is needed
- **Evolution, Maintenance & tailoring**
 - Controlled management of changes
 - Replace one variant with another
 - Hue-saturation-brightness vs Red-Blue-Green for colour
Loosely coupled distributed ‘just in time’ ontology development

local cycles: work by users

global cycle & work at centre
Referencing, mapping & importing

• Mapping
 – Pointers via annotations only

• Referencing
 – Common identifiers only
 • OWL: URI as a unique reference

• Referencing with partial import
 – Upwards taxonomy?

• Importing
 – Inclusion of all information
Referencing

- Common ID / Controlled vocabulary
 - Need the reference but not the structure
 - If everyone uses the same reference, we can know if we agree or disagree
 - May not need to merge
 - Or may make later merging easier
Importing / Inclusion
True modularisation:

• The rest of this talk
 – Important practicalities
 – Ontology structure and Normalisation
Important practicalities

“Nonsemantic Identifiers”

• Lexical names make lousy identifiers
 – Spelling errors
 – Arguments over ‘terms’
 – Changes in usage
 – Variation between sites

• Meaningless identifiers much safer
 – Almost impossible to edit a set of coherent modularised ontologies using names to link
 • Made particularly hard by the use of URIswww.
important practicalities

• Namespaces vs Base URIs/Modules
 – Namespaces are often used to indicate modules
 • … but do not depend on them

• Local copies vs web sources
 – Need local redirection and ‘repositories’
 • Still working on this in Protégé OWL
 – Let us know if it works well.

• Notion of a “package”
 – Still ill defined
Other work

- Swoop circle diagrams
- Oscar Corcho and KnowledgeWeb deliverables
Swoop - “Fly the mother ship”
Ontology Structure

Assertion:

The arrival of logic-based ontologies/OWL gives new opportunities to make ontologies more manageable and modular

- Let the ontology authors
 - create discrete modules
 - describe the links between modules
- Let the logic reasoner
 - Organise the result
Two dimensions for modularisation

- Segmentation
 - Drugs, anatomy, diseases,
 - Micro and macro anatomy
 - ...
Some scenarios: Segmentation

- Re-use of parts of a high level ontology
 - Self-standing vs modifiers
 - Continuants vs Occurrents
 - Parts and whole - mereology
 » Biology
 * Core Anatomy
 * Gross anatomy
 * Organs
 * Vessels
 * Limbs
 * Organs + vessels
 * Limbs + vessels
 ...
 * Cellular
Two dimensions for modularisation

• Abstraction - specialisation
 – Vertebrate anatomy, mammalian anatomy, human anatomy
 • What is common?
 – hand
 • left, right hand
 – Vertebra
 • cervical (neck…)
 – 2nd, 3rd, 4th..
 • thoracic (chest)
 – 8th, 9th, 10th…
 – Specialisation of guideline for my hospital
Segmentation & locking
Primitive & defined classes

- **Primitive classes**
 - Cheese, Mozarella, Pizza,
 - Cannot be split
 - Must be in one module

- **Defined classes**
 - Cheesy Pizza, Vegetarian Pizza
 - Span modules
 - Glue modules together
 - “Come apart” when classes are split
 - Often collapse logically
 - Can’t tell them apart without the ontology referenced

 - **But need to know which module**
 - Therefore want them to have just one primitive parent

- **Additional descriptions**
 - References between classes
 - Cheese comes from Milk
 - Milk is new extra information
Reasons normalise an ontology?

• Modularisation, Evolution and Maintenance
 – The general modularisation problem for expressive ontologies is intractable
 • Need additional constraints
 • Ease of defining mutually exclusive segments
 – Ease maintenance behaviour
 • 1 change in one place
 – No “side effects” or “update anomalies”

• Defeat combinatorial explosions
 – Reduce an exponential structure to two linear structures
 • “Just in time” ontologies

• A first step towards comprehensive meta models and ontology schemas
The scaling problem: The combinatorial explosion

- It keeps happening!
 - “Simple” brute force solutions do not scale up!

- Conditions x sites x modifiers x activity x context →
 - Huge number of terms to author
 - Software CHAOS
Combination of things to be done & time to do each thing

- Terms and forms needed
 - Increases exponentially

- Effort per term or form
 - Must decrease to compensate

- To give the effectiveness we want
 - Or might accept
The exploding bicycle

- 1972 ICD-9 (E826) 8
- READ-2 (T30..) 81
- READ-3 87
- 1999 ICD-10 ...
1999 ICD10: 587 codes

• V31.22 Occupant of three-wheeled motor vehicle injured in collision with pedal cycle, person on outside of vehicle, nontraffic accident, while working for income

• W65.40 Drowning and submersion while in bath-tub, street and highway, while engaged in sports activity

• X35.44 Victim of volcanic eruption, street and highway, while resting, sleeping, eating or engaging in other vital activities
Evolution Maintenance & tailoring

• What might a change affect?
 – What needs to be locked?
• What has to be changed to make a variation?
 – What can be “swapped out” and replaced?
Logic-based Ontologies: Conceptual Lego

- hand
- extremity
- body
- chronic
- acute
- abnormal
- normal
- ischaemic
- deletion
- polymorphism
- gene
- protein
- cell
- expression
- Lung
- inflammation
- infection
- bacterial
Logic-based Ontologies: Conceptual Lego

“SNPolymorphism of CFTRGene causing Defect in MembraneTransport of Chloride Ion causing Increase in Viscosity of Mucus in CysticFibrosis…”

“Hand which is anatomically normal”
Normalisation for Segmentation: Logical Constructs build complex concepts from modularised primitives
Normalising (untangling) Ontologies

Structure

Part-whole

Function
Normalisation and Untangling
Let the reasoner do multiple classification

- **Tree**
 - Everything has just one parent
 - A ‘strict hierarchy’
- **Directed Acyclic Graph (DAG)**
 - Things can have multiple parents
 - A ‘Polyhierarch’
- **Normalisation**
 - Separate primitives into disjoint trees
 - Link the trees with restrictions
 - Fill in the values
Untangling and Enrichment
Using a classifier to make life easier

Substance
- Protein
 - ProteinHormone
 - Insulin
- Steroid
 - SteroidHormone
 - Cortisol
- Hormone
 - ProteinHormone
 - Insulin
 - SteroidHormone
 - Cortisol
- Catalyst
- Enzyme
- ATPase
Most normalisation results in three potential modules: *two primitive skeletons*.
And an interface

Definitions

Plus extra description
Unified ontology after classification
Consider the steps to make a change

- What do we have to do to organise hormones as metabolic hormones and sex hormones and stress hormones and add in testosterone?
A Few of the changes the hard way

<table>
<thead>
<tr>
<th>Substance</th>
<th>- Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>- ProteinHormone</td>
<td>- - Insulin</td>
</tr>
<tr>
<td>- Steroid</td>
<td>- - Cortisol</td>
</tr>
<tr>
<td>- SteroidHormone</td>
<td>- - Hormone</td>
</tr>
<tr>
<td>- - Sex Hormone</td>
<td>- - ProteinSexHrmn</td>
</tr>
<tr>
<td>- ProteinHormone</td>
<td>- - ProteinMetabolicHrmn</td>
</tr>
<tr>
<td>- - Insulin</td>
<td>- - Sex Hormone</td>
</tr>
<tr>
<td>- - ProteinSexHormone</td>
<td>- - SteroidHormone</td>
</tr>
<tr>
<td>- - Cortisol</td>
<td>- - Catalyst</td>
</tr>
<tr>
<td>- Catalyst</td>
<td>- - Enzyme</td>
</tr>
<tr>
<td>- Enzyme</td>
<td>- - ATPase</td>
</tr>
</tbody>
</table>
The easy way - and only create the ones I need

- Substance
 - Protein
 - Insulin
 - ATPase
 - Steroid
 - Cortisol
 - Testosterone

- PhsioloicRole
 - HormoneRole
 - SexHR
 - MetabolicHR
 - StressHR
 - CatalystRole

Substance
 - Protein
 - Insulin
 - Enzyme
 - ATPase
 - Steroid
 - SteroidHormone
 - Cortisol
 - ProteinHormone
 - Insulin
 - SteroidHormone
 - SexHR
 - Testosterone
 - StressHormone
 - Cortisol
 - MetabolicHrmn
 - Catalyst
 - Enzyme
 - ATPase
Changes to Structure

& Roles
Update the overall structure
stress roles are metabolic roles: One change
Another Example

From

Diameter
 Large_diameter
 Large_increasing_diameter
 Large_decreasing_diameter
 Small_diameter
 Small_increasing_diameter
 Small_decreasing_diameter

To add regular/irregular we get

Diameter
 Large_diameter
 Large_increasing_diameter
 Large_increasing_regular_diameter
 Large_increasing_irregular_diameter
 Large_decreasing_diameter
 Large_decreasing_regular_diameter
 Large_decreasing_irregular_diameter
 Small_diameter
 Small_increasing_diameter
 Small_increasing_regular_diameter
 Small_increasing_irregular_diameter
 Small_decreasing_diameter
 Small_decreasing_regular_diameter
 Small_decreasing_irregular_diameter
Instead of

Which would you rather maintain?

Level
- Large
- Small

Trend
- Increasing
- Decreasing

Regularity
- Regular
- Irregular
Summary

• Modularisation for
 – Manageability
 – Locking and collaborative development
 – Adaptation and Localisation

• Two dimensions:
 – Abstraction & Segmentation

• Normalisation
 – Clean modularisation
 – Control the combinatorial explosion
 – Support smooth evolution
 • Changes only in one place