
Knowtator: A plug-in for creating training and evaluation data sets for
Biomedical Natural Language systems

Philip V. Ogren

Division of Biomedical Informatics
Mayo Clinic College of Medicine

Rochester, MN, USA
Ogren.Philip@mayo.edu

Abstract

A general-purpose text annotation tool called Knowtator is introduced. Knowtator facilitates the
manual creation of annotated corpora that can be used for evaluating or training a variety of natu-
ral language processing systems. Building on the strengths of the Protégé knowledge representa-
tion system, Knowtator has been developed as a Protégé plug-in that leverages Protégé’s
knowledge representation capabilities to specify annotation schemas. Knowtator’s unique advan-
tage over other annotation tools is the ease with which complex annotation schemas (e.g. schemas
which have constrained relationships between annotation types) can be defined and incorporated
into use. Knowtator is available under the Mozilla Public License 1.1 at
http://bionlp.sourceforge.net/Knowtator.

1 Introduction

Knowtator is a general-purpose text annotation tool for creating annotated corpora suitable for evaluating
or training Natural Language Processing (NLP) systems. Such corpora consist of texts (e.g. documents,
abstracts, or sentences) and annotations that associate structured information (e.g. POS tags, named enti-
ties, shallow parses) with extents of the texts. The annotations correspond to a gold standard data set that
can be used to directly compare against NLP system output. Alternatively, the annotations can be used as
input to an NLP system’s training algorithms. An annotation schema is a specification of the kinds of
annotations that can be created. Knowtator provides a very flexible mechanism for defining annotation
schemas. This allows it to be employed for a large variety of corpus annotation tasks.

Knowtator has been implemented as a Protégé plug-in and runs in the Protégé environment. In Know-
tator, an annotation schema is defined with Protégé class, instance, slot, and facet definitions using the
Protégé knowledge-base editing functionality. The defined annotation schema can then be applied to a
text annotation task without having to write any task specific software or edit specialized configuration
files. Annotation schemas in Knowtator can model both semantic (e.g. protein-protein interactions) and
linguistic phenomena (e.g. coreference resolution).

2 Related work

There exists a plethora of manual text annotation tools for creating annotated corpora. While it has been
common for individual research groups to build customized annotation tools for their specific annotation
tasks, several text annotation tools have emerged in the last few years that can be employed to accomplish

Figure 1 Sample annotations capturing mentions of diagnostic procedure for
colorectal cancer.

a wide variety of annotation tasks. Some of the better general-purpose annotation tools include Callisto1,
WordFreak2, GATE3, and MMAX24. Each of these tools is distributed with a limited number of annota-
tion tasks that can be used ‘out of the box.’ Many of the tasks that are provided can be customized to a
limited extent to suit the requirements of a user’s annotation task via configuration files. In Callisto, for
example, a simple annotation schema can be defined with an XML DTD that allows the creation of an
annotation schema that is essentially a tag set augmented with simple (e.g. string) attributes for each tag.
In addition to configuration files, WordFreak provides a plug-in architecture for creating task specific
code modules that can be integrated into the user interface.

A complex annotation schema might include hierarchical relationships between annotation types and
constrained relationships between the types. Creating such an annotation schema can be a formidable
challenge for the available tools either because configuration options are too limiting or because imple-
menting a new plug-in is too expensive or time consuming.

3 Implementation

3.1 Annotation schema

Knowtator approaches the definition of an annotation schema as a knowledge engineering task by lever-
aging Protégé’s strengths as a knowledge-base editor. Protégé has user interface components for defining
class, instance, slot, and facet frames. A Knowtator annotation schema is created by defining frames us-
ing these user interface components as a knowledge engineer would when creating a conceptual model of
some domain. For Knowtator the frame definitions model the phenomena that the annotation task seeks
to capture. An annotation schema consists primarily of a target ontology (see §3.2.1 below) but also con-
tains additional configuration information such as the annotator’s names and class color assignments.

As a simple (and hypothetical) example, an annotation schema that captures mentions of diagnostic
procedures for the colorectal cancer domain could be modeled with the classes procedure and anatomical
site. A slot called procedure site is constrained to be an instance of anatomical site and captures the ana-
tomical location where the procedure took place. Annotations in Knowtator using this simple schema are

1 http://callisto.mitre.org
2 http://wordfreak.sourceforge.net
3 http://gate.ac.uk/. GATE is a software architecture for NLP that has, as one of its many components, manual text annotation functionality.
4http://mmax.eml-research.de/.

shown in Figure 1. An annotation for the text ‘endoscopic biopsy’ is associated with the class procedure
and is the selected annotation in Figure 1.

A key strength of Knowtator is its ability to relate annotations to each other via the slot definitions of
the corresponding annotated classes. In the example the procedure site slot relates the procedure annota-
tion with the annotations corresponding to the class anatomical site for the texts ‘Colon, cecum’ and ‘Co-
lon … ascending.’ The constraint on the slot ensures that the values of the procedure site slot are filled
with annotations corresponding to anatomical sites.

Protégé is capable of representing much more sophisticated and complex conceptual models which can
be used, in turn, by Knowtator for text annotation.

3.2 Knowledge Model

The Knowtator data model consists of three components: 1) an ontology that defines the concepts that are
the target of the annotation task 2) a set of instances that capture assertions about relations between and
properties of concepts mentioned in text, and 3) a mapping between the target text and members of 2.

3.2.1 Target Ontology

The set of class, instance, slot, and facet frames that define the set of named entities and relations that are
the subject of the annotation task is called a target ontology and is roughly equivalent to an annotation
schema (described in §3.1 above.) A target ontology models the semantic and/or linguistic phenomena
that are found in or described by the target texts. The annotation schema has no dependencies on any
Knowtator specific class definitions (e.g. classes in the target ontology do not inherit slots from Knowta-
tor specific classes.) The target ontology provides a conceptual model of the target domain and could be
used independently of Knowtator.

3.2.2 Concept Mentions

Human language is not constrained to conform to a formal knowledge model regardless of how carefully
constructed it5 might be. Rather than assume that target texts will conform to a pre-defined model of a
domain, the Knowtator data model provides a mechanism to describe mentions of concepts with respect
to a knowledge model. The term concept mention is defined as a description of a concept that has been
found in the target text. A concept mention provides a means for describing how a concept (e.g. a class or
instance frame) is being discussed in text and the assertions that can be drawn from the text about that
concept (e.g. relationships between other mentioned concepts or properties of the concept). While Know-
tator utilizes the annotation schema to help the human annotator make consistent annotations, it is not
constrained by the data model to create annotations that strictly adhere to the target ontology with respect
to the constraints that have been defined therein.

3.2.3 Annotations

Annotations provide a mapping between the target texts and concept mentions that have been created. An
annotation consists of a concept mention, a span (or spans) of text, and other book keeping information
such as the annotator that created the annotation, the date the annotation was created, and a pointer to the
target text. The annotation definition is customizable so that additional book keeping information can be
captured if desired.

For NLP tasks such as named entity recognition and relationship extraction the Knowtator data model
provides a clean separation between the concepts that are being talked about and how they are being
talked about. However, for modeling linguistic phenomena (e.g. a deep parse) this clean separation may

5 Ambiguous anaphora intentional.

not always make sense (i.e. the extent of text in question may actually be an instance of noun phrase
rather than a mention of one.) Knowledge engineering issues such as these can be addressed by Knowta-
tor to some extent but such discussion is outside the scope of this extended abstract.

3.3 Features

In addition to its flexible annotation schema definition capabilities, Knowtator has many other features
that are useful for executing text annotation projects. A consensus set creation mode allows one to create
a gold standard using annotations from multiple annotators. First, annotations from multiple annotators
are aggregated into a single Knowtator annotation project. Annotations that represent agreement between
the annotators are consolidated such that the focus of further human review is on disagreements between
annotators.

Inter-annotator agreement (IAA) metrics provide descriptive reports of consistency between two or
more annotators. Several different match criteria (i.e. what counts as agreement between multiple annota-
tions) have been implemented. Each gives a different perspective on how well annotators agree with each
other and can be useful for uncovering systematic differences. IAA can also be calculated for selected
annotation types giving very fine grained analysis data.

Knowtator provides a pluggable infrastructure for handling different kinds of text source types. By
implementing a simple interface, one can annotate any kind of text (e.g. from xml or a relational data-
base) with a modest amount of coding.

Knowtator provides stand-off annotation such that the original text that is being annotated is not modi-
fied. Annotation data can be exported/imported to/from a simple XML format.

Annotation filters can be used to view a subset of available annotations. This may be important if, for
example, viewing only named entity annotations is desired in an annotation project that also contains
many part-of-speech annotations. Filters are also used to focus IAA analysis and the export of annota-
tions to XML.

Knowtator can be run as a stand-alone system (e.g. on a laptop) without a network connection. For in-
creased scalability, Knowtator can be used with a relational database backend (via JDBC).

Knowtator and Protégé are provided under the Mozilla Public License 1.1 and are freely available with
source code at http://bionlp.sourceforge.net/ Knowtator and http://protege.stanford.edu, respectively.
Both applications are implemented in the Java programming language and have been successfully de-
ployed and used in the Windows, MacOS, and Linux environments.

4 Conclusion

Knowtator has been developed to leverage the knowledge representation and editing capabilities of the
Protégé system. By modeling syntactic and/or semantic phenomena using Protégé frames, a wide variety
of annotation schemas can be defined and used for annotating text. New annotation tasks can be created
without writing new software or creating specialized configuration files. Knowtator also provides addi-
tional features that make it useful for real-world multi-person annotation tasks.

