Using OWL and Description Logics Based Classification for Reasoning in Biomedical Applications

Daniel L. Rubin
Olivier Dameron
Mark A. Musen
Stanford Medical Informatics
Stanford University

Motivation

- The Virtual Soldier Project
 - Computer-based \textit{in-silico} model of human anatomy/physiology
 - Deliver just-in-time decision support to field medic in caring for battlefield injuries

- Components
 - Geometric representation of human anatomy
 - Computer reasoning services to predict injuries & consequences

Our task

- Use geometric models to predict expected organ damage from penetrating injury
 - Given: 3-D volumetric imaging data
 - Given: injury trajectory
 - Predict: organ damage and extent of injuries

This task requires anatomic reasoning

Anatomic reasoning is complex

- Anatomic structure dependencies
 - Coronary arteries supply regions of myocardium
 - Injury to a coronary artery \rightarrow myocardial ischemia

- Injury propagation
 - Penetration of LV wall \rightarrow LV/peric continuity \rightarrow hemopericardium, possible tamponade
 - Penetration of pericardium \rightarrow peric/pleural continuity \rightarrow hemothorax

Knowledge-based approach

- Knowledge: ontology of anatomy
 - Foundational Model of Anatomy (FMA; Mejino and Rosse)
 - Catalog of organs, organ parts
 - Relationships encode anatomic dependencies

- Reasoning services
 - Use FMA with description of trajectory of trauma to infer injuries
FMA: Frame-based Ontology

What is best approach to anatomic reasoning?
- Embed necessary knowledge for reasoning in application code
- Represent knowledge in OWL, and use automatic classification for reasoning

Reasoning as classification task
- Inferring injury can be posed as a classification task
- Benefits
 - Declarative representation of all knowledge pertinent to reasoning
 - High-performance domain-independent classifiers
 - Removal of reasoning knowledge from application code

Reasoning pipeline

Method
- Knowledge representation
 - Translate FMA (cardiac anatomy) into OWL
 - Add knowledge describing heart injuries
 - Use automatic classification for reasoning
- Two anatomic reasoning applications
 - Infer consequences of coronary artery injury
 - Infer consequences of heart wall injury with and without clot formation

FMA translation into OWL
- Subset of FMA pertaining to cardiac anatomy
 - Manually-compiled translation rules
 - E.g., hasDirectAnatomicalPart slot values \rightarrow axiom using hasDirectAnatomicalPart relation
 - Python scripts implement ontology operations
 - Manual editing of classes in some places
 - E.g., Atrium subclassOf(LA or RA)
FMA in OWL

Heart chambers in geometric models are subdivided into perfusion zones using anatomic knowledge in the FMA ontology.

Anatomic knowledge: coronary arteries have segments

Reasoning about coronary artery injury in OWL

- Define organ parts in terms of segments of arteries supplying them
- Thus, inferring consequence of coronary artery injury is a classification task
- To *describe injury*, assert segmental arterial injury in the ontology
- To *infer consequences of injury*, apply automatic classification to the ontology

Coronary artery injury

Different parts of heart are supplied by different coronary artery segments

- LV wall
- Pericardium
- Coronary a.
- Left anterior wounds (T7a.1,2)
- Pericardial space
- Pleural space
- Posterior anterior T7-anterior wounds (T7a.1,2)
- Coronary a.

Reasoning about coronary artery injury

- Define organ parts in terms of segments of arteries supplying them
- Thus, inferring consequence of coronary artery injury is a classification task
- To *describe injury*, assert segmental arterial injury in the ontology
- To *infer consequences of injury*, apply automatic classification to the ontology
Defining anatomic structures in terms of vascular supply

Anatomy Ontology

Concept Definitions

This organ’s arterial supply is defined here

We define concepts related to injury: “severed blood vessel”, and “functionally impaired blood vessel”

We define the concepts of “ischemia-total” and “ischemia-complete”

OWL automatically infers where distal blood flow is lost

If we assert that the RCA is occluded between conus a. and and diagonal a., we can infer the ischemic consequences

OWL automatically infers what structures are damaged

Types of ischemic regions of heart that will be ischemic

Using inferred knowledge

- After classification, the inferred ontology reflects knowledge about the post-injury state
- Interrogate ontology to find the functionally impaired arteries and ischemic heart regions
- Update the pre-injury geometry to display the post-injury state
Desiderata: an example injury

A trajectory is described, and predicted initial injuries are displayed.

Desiderata: inferring injury propagation

A computer reasoning service deduces parts of the myocardium that are at risk consequent to injury of a coronary artery, shown as highlighted structures in the ontology (above) and as shaded parts of this image of the heart (right).

Reasoning about heart wall injury

LV wall penetration injury

T7-anterior wounds (T7a.1,2)

Reasoning about heart wall injury

LV wall penetration injury

T7-anterior wounds (T7a.1,2)

Representing injury

- Class AddedConduit represents a conduit
- Penetration of the wall of the heart
 - Create instance of AddedConduit and say it is continuous with both the cavity of the left ventricle and the cavity of the pericardium of this individual
 - Add this AddedConduit as a part of the wall of the heart

Continuity of Added Conduit

Create AddedConduit continuous with LV cavity and pericardial cavity.
Add a AddedConduit to wall of heart

Property describing continuity

Inferring continuities

We can infer normal and abnormal continuities with LV cavity

Modeling “blood flow”

Axiom representing that if an anatomical cavity is continuous to something filled with blood, then it is itself filled with blood

Inferring consequents of injury

Classifier finds that the pericardial cavity and the pleural cavity contain blood (in addition to the cardiac chambers)
Discussion

- OWL in biomedical applications has to date focused on "terminological" aspects of knowledge
- Can use OWL for other reasoning applications
 - Advantage: promotes knowledge reuse
 - Disadvantage: difficulty in OWL modeling for inexperienced users; may not be most computationally efficient approach

Conclusions

- Certain biomedical reasoning tasks can be posed as classification problem
- Benefits of OWL & automatic classification for automated reasoning
 - Declarative model of knowledge used for reasoning in ontology
 - OWL is an emerging KR standard
 - Representation of patient state in ontology
 - Exploits reuse of existing ontologies—can create new reasoning applications via straightforward extensions to ontology

Acknowledgements

- Defense Advanced Research Projects Agency (DARPA), executed by the U.S. Army Medical Research and Materiel Command/TATRC Cooperative Agreement, (Contract W81XWH-04-2-0012)
- Protégé Resource (LM007885)

Thank you.

Contact info:
rubin@smi.stanford.edu