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Overview

• What is a Plugin?
• How Plugins work
• Plugin Types and Capabilities
• Development Tips
• Packaging
• Bundling
• Coming Changes



Out of Scope

• Standard Java
– Coding
– Packaging (jars)
– Utilities

• Development environments
• Licensing (see FAQ)
• Non-plugin extensions



What is a Plugin?

• Extension to Protege 
– Requires no source code modifications
– Loaded and managed by system

• Typically the implementation of a Java 
interface and an entry in a Java manifest 
file.

• Typically packaged as one or more jar files 
and installed in a subdirectory of the 
Protege plugins directory



How Plugins work

• System looks at all manifests available:
– On the classpath
– In directories one level down from plugins

• all jars
• File meta-inf/manifest.mf

• System looks for a manifest entry 
identifying a plugin and loads the 
referenced class

• System creates an instance of the class as 
needed



Types of Plugins

• TabWidget
• SlotWidget
• KnowledgeBaseFactory (“Backend”)
• ProjectPlugin
• ExportPlugin
• ImportPlugin



Plugin: TabWidget

• What is it?
– Large piece of screen real-estate
– Can interact with domain KB

browse, change, delete, corrupt

• What are its limitations?
– Difficult to supplement or even interact with 

other tabs
• How hard is it to create?

– Easy (1 day)



TabWidget Example

(for all example code see 
http://protege.stanford.edu/doc/pdk)

http://protege.stanford.edu/


Plugin: SlotWidget

• What is it?
– UI Control which allows the user to display and 

modify a slot value
– Follows a protocol for hiding interaction KB

• What are its limitations?
– Works best with a single slot

• How hard is it to create?
– Easy (1 day)



SlotWidget Example

(for all example code see 
http://protege.stanford.edu/doc/pdk)

http://protege.stanford.edu/


Plugin: KnowledgeBaseFactory

• What is it?
– Replacement for the standard storage mechanisms 

with
• Database
• External server
• …

– Allows for parsing of different file formats
• What are its limitations?

– Difficult to manipulate UI
– Implementations tend to be buggy

• How hard is it to create?
– Hard (>= 1 month)
– Consider Import/Export plugin instead



KnowledgeBaseFactory Example

(for all example code see 
http://protege.stanford.edu/doc/pdk)

http://protege.stanford.edu/


Plugin: ProjectPlugin

• What is it?
– Code that executes when “things happen” to a 

project (create, load, display, close, etc)
– Get access to project, view, menu bar, tool bar 

and can modify them as you like
• How hard is it to create?

– Easy (1 day)



ProjectPlugin Example

(for all example code see 
http://protege.stanford.edu/doc/pdk)

http://protege.stanford.edu/


Plugin: ExportPlugin

• What is it?
– Code that saves (part of) a knowledge-base in 

any given format to somewhere else
• files, servers, web, …

– No change of the current backend
– No guarantee of “round trip” (export->import)
– No “live” connection

• How hard is it to create?
– Medium (1 week)



ExportPlugin Example

(for all example code see 
http://protege.stanford.edu/doc/pdk)

http://protege.stanford.edu/


Plugin: ImportPlugin

• What is it?
– Code that creates a knowledge-base from 

information from somewhere else
• files, servers, web, …

– No change of the current backend
– No guarantee of “round trip” (export->import)
– No “live” connection

• How hard is it to create?
– Medium (1 week)



ImportPlugin Example

(for all example code see 
http://protege.stanford.edu/doc/pdk)

http://protege.stanford.edu/


Development Tips

• To ease integration with a debugger
– implement a main() method

• To avoid making a jar while debugging
– Put your meta-inf/manifest.mf file on the classpath

• To access icons from your code:
– use FileUtilities.loadImageIcon() 

• Access the plugin’s directory for config files
– PluginUtilites.getInstallationDirectory()

• Watch out for caching!



Packaging

• Create a directory structure like:
edu.stanford.smi.protegex.myproject/

myproject.jar
myproject_doc.html
myproject_about.html
plugin.properties

• Zip it up



Packaging II

• Sample Plugin properties file
plugin.component.count=1
plugin.component.name.0=PROMPT tab
plugin.component.about.0=about_prompt.html
plugin.component.doc.0=doc/index.html
plugin.dependency.count=1
plugin.dependency.0=edu.stanford.smi.protegex.owl



Bundling

• Plugins can be “bundled” with the full release and 
made available to all users

• Advantage: 
– You may get a lot of users quickly

• Disadvantage:
– You may get a lot of users quickly

• In order to be bundled the plugin must be:
– Well Formed
– Well Behaved
– Well Maintained



Bundling II

• Well Formed
– jar file in an appropriate, recognizable directory 

• appropriate: “edu.myschool.mygroup.myproject”, not “foo”
• recognizable: last directory element: “mytab” not “foo”

– About Box and Documentation entries
– Minimal size

• minimal documentation 
– links to more extensive documentation on web
– no PDF, MS Word, large image files 

• no source
• at most one small example project
• readme.txt file if necessary

– isSuitable implemented if appropriate
• requires certain sorts of projects or additional installation 

(shared libraries, etc)



Bundling III

• Well Behaved
– Must “work” (not crash on startup) with the current 

release
– Minimal information (just errors) printed to the console 

window
• Single startup line is ok (but certainly not required)
• No tracing

– Must start up and shut down smoothly
• No time consuming code executed in static initializer
• No long start up delays or modal dialogs that block the rest of 

the system
• Must free acquired resources in “dispose()”

• Well Maintained
– Developer/maintainer “responsive” to problems.



Coming Changes

• Nothing major!

• Additional fixes to class loader mechanism 
• Allow users to disable installed plugins 
• Additional optional “static interface” methods: 

– isSuitable() for other plugin types
– buildString() for macro substitution on About Box page 

• Optional localization support for plugins
• Documented procedures for bundling



Summary

Plugins provide flexible and powerful 
mechanisms for extending Protege in many 

ways.

Go do something interesting!
(Think about contributing it back to the community.)
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