
Developing Protégé Plugins
Ray Fergerson

Stanford



Overview

• What is a Plugin?
• How Plugins work
• Plugin Types and Capabilities
• Development Tips
• Packaging
• Bundling
• Coming Changes



Out of Scope

• Standard Java
– Coding
– Packaging (jars)
– Utilities

• Development environments
• Licensing (see FAQ)
• Non-plugin extensions



What is a Plugin?

• Extension to Protege 
– Requires no source code modifications
– Loaded and managed by system

• Typically the implementation of a Java 
interface and an entry in a Java manifest 
file.

• Typically packaged as one or more jar files 
and installed in a subdirectory of the 
Protege plugins directory



How Plugins work

• System looks at all manifests available:
– On the classpath
– In directories one level down from plugins

• all jars
• File meta-inf/manifest.mf

• System looks for a manifest entry 
identifying a plugin and loads the 
referenced class

• System creates an instance of the class as 
needed



Types of Plugins

• TabWidget
• SlotWidget
• KnowledgeBaseFactory (“Backend”)
• ProjectPlugin
• ExportPlugin
• ImportPlugin



Plugin: TabWidget

• What is it?
– Large piece of screen real-estate
– Can interact with domain KB

browse, change, delete, corrupt

• What are its limitations?
– Difficult to supplement or even interact with 

other tabs
• How hard is it to create?

– Easy (1 day)



TabWidget Example

(for all example code see 
http://protege.stanford.edu/doc/pdk)

http://protege.stanford.edu/


Plugin: SlotWidget

• What is it?
– UI Control which allows the user to display and 

modify a slot value
– Follows a protocol for hiding interaction KB

• What are its limitations?
– Works best with a single slot

• How hard is it to create?
– Easy (1 day)



SlotWidget Example

(for all example code see 
http://protege.stanford.edu/doc/pdk)

http://protege.stanford.edu/


Plugin: KnowledgeBaseFactory

• What is it?
– Replacement for the standard storage mechanisms 

with
• Database
• External server
• …

– Allows for parsing of different file formats
• What are its limitations?

– Difficult to manipulate UI
– Implementations tend to be buggy

• How hard is it to create?
– Hard (>= 1 month)
– Consider Import/Export plugin instead



KnowledgeBaseFactory Example

(for all example code see 
http://protege.stanford.edu/doc/pdk)

http://protege.stanford.edu/


Plugin: ProjectPlugin

• What is it?
– Code that executes when “things happen” to a 

project (create, load, display, close, etc)
– Get access to project, view, menu bar, tool bar 

and can modify them as you like
• How hard is it to create?

– Easy (1 day)



ProjectPlugin Example

(for all example code see 
http://protege.stanford.edu/doc/pdk)

http://protege.stanford.edu/


Plugin: ExportPlugin

• What is it?
– Code that saves (part of) a knowledge-base in 

any given format to somewhere else
• files, servers, web, …

– No change of the current backend
– No guarantee of “round trip” (export->import)
– No “live” connection

• How hard is it to create?
– Medium (1 week)



ExportPlugin Example

(for all example code see 
http://protege.stanford.edu/doc/pdk)

http://protege.stanford.edu/


Plugin: ImportPlugin

• What is it?
– Code that creates a knowledge-base from 

information from somewhere else
• files, servers, web, …

– No change of the current backend
– No guarantee of “round trip” (export->import)
– No “live” connection

• How hard is it to create?
– Medium (1 week)



ImportPlugin Example

(for all example code see 
http://protege.stanford.edu/doc/pdk)

http://protege.stanford.edu/


Development Tips

• To ease integration with a debugger
– implement a main() method

• To avoid making a jar while debugging
– Put your meta-inf/manifest.mf file on the classpath

• To access icons from your code:
– use FileUtilities.loadImageIcon() 

• Access the plugin’s directory for config files
– PluginUtilites.getInstallationDirectory()

• Watch out for caching!



Packaging

• Create a directory structure like:
edu.stanford.smi.protegex.myproject/

myproject.jar
myproject_doc.html
myproject_about.html
plugin.properties

• Zip it up



Packaging II

• Sample Plugin properties file
plugin.component.count=1
plugin.component.name.0=PROMPT tab
plugin.component.about.0=about_prompt.html
plugin.component.doc.0=doc/index.html
plugin.dependency.count=1
plugin.dependency.0=edu.stanford.smi.protegex.owl



Bundling

• Plugins can be “bundled” with the full release and 
made available to all users

• Advantage: 
– You may get a lot of users quickly

• Disadvantage:
– You may get a lot of users quickly

• In order to be bundled the plugin must be:
– Well Formed
– Well Behaved
– Well Maintained



Bundling II

• Well Formed
– jar file in an appropriate, recognizable directory 

• appropriate: “edu.myschool.mygroup.myproject”, not “foo”
• recognizable: last directory element: “mytab” not “foo”

– About Box and Documentation entries
– Minimal size

• minimal documentation 
– links to more extensive documentation on web
– no PDF, MS Word, large image files 

• no source
• at most one small example project
• readme.txt file if necessary

– isSuitable implemented if appropriate
• requires certain sorts of projects or additional installation 

(shared libraries, etc)



Bundling III

• Well Behaved
– Must “work” (not crash on startup) with the current 

release
– Minimal information (just errors) printed to the console 

window
• Single startup line is ok (but certainly not required)
• No tracing

– Must start up and shut down smoothly
• No time consuming code executed in static initializer
• No long start up delays or modal dialogs that block the rest of 

the system
• Must free acquired resources in “dispose()”

• Well Maintained
– Developer/maintainer “responsive” to problems.



Coming Changes

• Nothing major!

• Additional fixes to class loader mechanism 
• Allow users to disable installed plugins 
• Additional optional “static interface” methods: 

– isSuitable() for other plugin types
– buildString() for macro substitution on About Box page 

• Optional localization support for plugins
• Documented procedures for bundling



Summary

Plugins provide flexible and powerful 
mechanisms for extending Protege in many 

ways.

Go do something interesting!
(Think about contributing it back to the community.)


	Developing Protégé Plugins
	Overview
	Out of Scope
	What is a Plugin?
	How Plugins work
	Types of Plugins
	Plugin: TabWidget
	TabWidget Example
	Plugin: SlotWidget
	SlotWidget Example
	Plugin: KnowledgeBaseFactory
	KnowledgeBaseFactory Example
	Plugin: ProjectPlugin
	ProjectPlugin Example
	Plugin: ExportPlugin
	ExportPlugin Example
	Plugin: ImportPlugin
	ImportPlugin Example
	Development Tips
	Packaging
	Packaging II
	Bundling
	Bundling II
	Bundling III
	Coming Changes
	Summary

