
FacsXpert
July 8, 2004

7th International Protégé Conference

• Builds protocols for studies with
FACS instruments

• Uses a modified Protégé-based
architecture that promotes runtime
extensibility for the end-user

FacsXpert

• Built
– At Stanford University’s Herzenberg Lab

– In close collaboration with Lee Herzenberg,
James Tung, David Parks, Wayne Moore
and other researchers in the Herzenberg
Laboratory

• With help from
– Mark Musen, Ray Fergerson, Monica

Crubezy, Natasha Noy and the Protégé
community

FacsXpert

• Presented by

– Stephen Meehan, software engineer
Herzenberg Lab, Stanford University
meehan@darwin.stanford.edu

– Since 1992, Stephen has pursued a “dream” of a
“software democracy” architecture where:

• An application derives the majority of its behavior
from runtime interpretation of its UML design model

• A user can extend this model while the application
runs

Thus the model is more than a design artifact, it is
runtime government by the people … for the people

Scope of Presentation

1. The FACS domain and need for
runtime extensibility

2. FacsXpert’s approach to data
structure extensibility

3. FacsXpert’s approach to data
integrity extensibility

4. FacsXpert’s approach to GUI
extensibility

Count and characterize fluorescent-
labeled cells in suspension to

– Monitor the progress of HIV infections by
counting the number of CD4 T lymphocytes
in blood from HIV-infected people

– Classify and stage tumors and to monitor
bone marrow transplant survival

– Do the basic science and studies that
underlie all these clinical advances

FACS instruments

FACS protocols specify
what will be done in a FACS assay

For each tube in the assay
– Add up to 20 reagents, each linked to one

of 12 fluorescent dyes

– Add one cell sample of up to 5 million cells

– Incubate and analyze with a multi-laser
(Hi-D) FACS instrument

– Store the resulting data file (often about 5
megabytes)

One assay often has 60 or more tubes

Sophisticated software is needed

• Must compute a feasible combination of staining reagents
(which “label” cells) by taking into consideration:

– Targeted species

– Targeted cellular markers

– Highly variable optical characteristics of fluorescent elements

– Optical detection capabilities of a FACS instrument’s
configuration

– Fluorescence interference between fluorescent elements

– Purpose of cell labeling: to gate, dump or discover cell
populations

– Availability of inventory

– Bio-chemical affinities between staining steps

Sophisticated software is needed

• Pipetting guide’s

– Reagent and specimen amounts must follow highly
variable dilution recommendations

– Organization must cater to pipetting technician work
flow which differs from the planning work flow of the
scientist

• Final protocol knowledge must interoperate with

– Instrument software (offline as well as real time)

– Analysis software

• GUI for decision making must be highly intuitive

Senior FACS scientists are often somewhere between
computer naïve and totally computer-phobic

Highly extensible software
is needed

• FACS vocabulary and “best practices” are
– Minimally standardized

– Rapidly changing

• From day to day, FACS scientists cannot
predict
– What questions they will be asking

– What materials they will be working with

• Hence, their “research planning” software
applications must be highly flexible and
customizable

Highly extensible software (cont.)
• THUS … scientists (in addition to knowledge/software

engineers) must be able to extend

– Data structures (classes, attributes, etc)

– Data integrity (rules that check knowledge inputs)

– The GUI

… without crashing the current application or future upgrades!!!

• Protégé provides the foundation for such a runtime evolvable
system

• Commercial alternatives (e.g. Oracle, Rational Rose)
suffer from higher financial cost, higher sys admin cost, closed
source and design-time centricity

Data structure extensibility

• Protégé supports data structure
extensibility through object-oriented sub
classing

• However, the its model editor GUI
overwhelms the scientist by exposing the
whole model

FacsXpert required a model editor that
only focuses on a specific part of the
model at the specific time that it is

relevant to the application

FacsXpert solution for
data structure extensibility

Pop up focuses on species
class hierarchy starting at

Mouse

A class-type slot widget that
supports a create action
which limits the model
editor’s focus to the slot’s
allowed parents

User creates 1 direct and 2
indirect Mouse sub classes

FacsXpert solution for
data structure extensibility

• A small # of programming idioms ready
FacsXpert for such extensions; for example:

– Creating instances

myProject.createInstance(null,
DisplayUtilities.pickCls(null,

Collections.singletonList(designTimeLeafClass
)))

– Querying class type

designTimeLeafClass .equals(unknownClass) ||
unknownClass.hasSuperclass(designTimeLeafClass)

Instantiating a new subject
The programming idiom detects
the need to query for sub classes
to the mouse class

End user’s extended
attributes

automatically appear

Darwin “crash-proofs”
data structure extensibility

• For any given class, Darwin prevents the
“extinction” of one or more slot associations
and one or more slot facets

• One can set 1 of 2 “watch dogs” to monitor
changes to “endangered” model elements:

– Golden retriever barks when user changes such an
element and allows rollback (for engineers)

– Doberman Pincher prevents user from making the
change (for end-users)

We built a tool named Darwin that guards
model evolution by handling model editions
which break hard-coded expectations

Darwin’s JAVA generator
• Darwin generates JAVA modules that benefit client

code by

– Establishing a simple and consistent idiom for type-
safe access to the endangered portions of the Protégé
model

– Adding JAVA compiler checking as a means of tracking
model dependencies

• Darwin translates

– All Protégé classes into JAVA interfaces hence
supporting multiple inheritance

– Concrete Protégé classes into JAVA classes that
implement all associated JAVA interfaces

From Protégé class…

The class “FACS single-reagent
proposal” has two direct super

classes

…To JAVA
Protégé super classes
become JAVA super-

interfaces

Protégé leaf classes
become JAVA

interfaces

Protégé concrete class
becomes a JAVA class
that implements all of

the interfaces

Data integrity extensibility

Primary goal

– Runtime extensibility of constraints that check
knowledge inputs (hereafter checks). Known to the
Protégé community as “knowledge acquisition”

Out of scope

– Runtime extensibility of constraints that

• infer new knowledge

• validate ontologies (consistency checking, disjointedness,
semantic imbalance etc.)

In practical terms…
– Allow scientists to author and authorize checks while

FacsXpert runs

Requirements

A. Decouple check inquirers from check providers

B. Support reuse for both of the above actors:

A. Inquirer: “Is anything wrong?”

B. Provider:

A. Domain independent

B. Parameter-izable check or check template; user
completes parameters when “binding”

C. Make checks model associated and oriented

D. Integrate checks with Protégé forms & pick lists

Requirements

E. Make checks scaleable
A. Focus on limited instance context

B. Incremental execution

F. Stay in sync with model re-factoring

G. Support stepwise debugging

H. Represent constraints in model
A. Start at :CONSTRAINT super class

B. Support inquirer querying of characterizations
such as: advisory, warning, error and fatal

Requirements

I. Allow user to add checks while FacsXpert runs

J. Support end user, ad hoc check authoring

K. Allow computability of dependencies, conflicts &
bottlenecks

A. Prevent conflicts between checks

B. Prevent conflicts between checks and model facets
and onto-clean meta classes/slots

L. Have reasoning agents that use computability
(otherwise prior requirement is “pie in the sky”)

Data integrity extensibility

Engineering options (in 2002)

1. Reuse an existing runtime computable grammar

Pal with EzPAL

JESS

OCL

2. Invent a new “non programmatic” grammar;
implementation options included:

1. Translate invented grammar to accepted grammar to reuse
interpreter

2. Interpret the invented grammar directly

3. New JAVA validity checking framework that promotes
“parameterized check templates”

We took choice 3

… and met 7 of 12 requirements

A. Decouple check inquirers from check providers

B. Support reuse in both of the above actors

C. Make checks model associated and oriented

o By sub classing Darwin

D. Integrate checks with Protégé forms & pick lists

E. Make checks scaleable

F. Stay in sync with model re-factoring:

o by sub classing Darwin class

G. Support step-wise debugging

An example of validity checking

Optical detector class contains
validity checks such as

– Number assigned for a FACS parameter
must be

• Between 1 and the number of colors for the
parent FACS configuration

• Unique amongst sibling optical detectors

– The laser configuration associated with a
detector must also be associated with the
FACS configuration parent

Checking integrity for
parameter number value

Protégé form for optical detectors
signifies that the user has entered

an incorrect parameter number

Checking integrity of Laser
configuration relationship

Pick list displays invalid choices as
disabled. An explanatory tool tip
appears when the mouse is hovered
over the disabled item.

What are our next steps?

Meet remaining requirements

H. Represent constraints in model

I. Allow user to add checks while FacsXpert runs

J. Support end user, ad hoc check authoring

K. Allow computability of dependencies, conflicts & bottlenecks

L. Have reasoning agents that use computability, otherwise prior
requirement is pie in the sky

Current approach is limited:

– H and I are easily achievable, but not J, K and L

– At best it will become hidden plumbing for approach that hits
all 12 requirements

And then there’s the GUI

Protégé has GUI extensibility…
but frankly

FACS scientists and the Protégé GUI
were like oil and water

• They were confused by the slot buttons with +, -, C,V,
X … and they balked at the dialogs

• They begged for a highly customizable Xcel-like
widget (grid) for manipulating tables of data

• Then, after many iterations of developing this table
widget, they ultimately decided that navigation and
group-based modifications of items in the table had to
be further simplified.

They wanted to access the table via a tree!

From a table (linear) view to…

…To a tree (hierarchical) view

Xpert grid/table supports

• User customizability
– Customize column: names, sizes, display order and sort

order
– Filter rows

• Persistence of user customizations
– Automatically remember and use the most recent

customizations
– Allow the user to save customizations
– Allow the user to save and retrieve sets of customizations

into property files

• Tree-based read/write access
– Define a tree structure to summarize elements of the

underlying table
– Select any combination of tree nodes
– See the column entries sieved by the node selections
– Modify all cells in a column for the sieved rows

GUI extensibility

• Added pick list plug-in framework
• Added system menu plug-in and overrides

• Added numerous other slot widgets

