Generating a Document-Oriented View of a Protégé Knowledge Base

Samson Tu, Shantha Condamoor, Mark Musen
Stanford Medical Informatics
Stanford University School of Medicine

Seventh International Protégé Conference, Bethesda, MD July 8, 2004

Problem: What’s in a Protégé knowledge base?

- Frame-based knowledge base can be a very large network
- A user may have difficulty comprehending the content of the knowledge base
 - Learning curve of Protégé
 - Organization of knowledge base
Current state: Protégé allows limited views of knowledge bases

• Default classes/instances tabs
 • Present tree-based views
 • Browse by classes and instances

• Specialized views
 • Examples
 • Diagram/graph widgets
 • Instance tree tab/widget
 • Ontoviz, Jambalaya tabs
 • Java-doc HTML generator
 • Most expose a small amount of information
 • Most organized around Protégé modeling constructs

Alternative: Domain-oriented document views

• Expose content of knowledge bases as a documents
• Organize documents around “rhetorical models” of the domain
 • Chapters and sections
 • Structured text
 • Graphics and tables
 • Index and glossaries
• Convey large amount of information
• Allow “reading” of knowledge base
 • Domain expert: can review KB content in a more familiar medium
 • Knowledge engineer: can review KB systematically
• Literate knowledge engineering
Outline of “KB2Doc” Work

- Problem domain
- Design decisions
- First experiment
 - Results
 - Methods
 - Assessment
- Extensions
 - Current work
 - Future possibilities

Work in progress!!

Problem domain: Guideline knowledge base

- Context: SAGE Project (www.sageproject.net)
- Encoding of clinical practice guidelines (example) for purpose of providing patient-specific decision support
- Structure of information
 - Guideline ontology and instances
 - Associated ontologies and KBs
 - Patient data model
 - Model of organization resources
 - Medical terminologies
- Scoping decisions
 - Produce a document-oriented view of the content of a guideline
 - In Protégé term: expose content of an instance tree (all frames referenced directly or indirectly from a root guideline instance)
Design criteria

- The document-generation capability should be generic
- The document should expose the machine-readable parts of Protégé knowledge base
- Multiple views should be allowed
- There should be no modification to guideline knowledge base
- The document should be “readable” on the web or as printed document
 - Pseudo-natural language and domain graphics
 - Mostly linear organization
 - Trade-off between expansion of content at points of use and repetition

First experiment: Results

SAGE immunization guideline
JCimmunization.html

PRODIGY guideline for patients with previous myocardial infarction
Curtesy of Neill Jones (SCHIN, University of Newcastle)
PriorMI.html
Method of first experiment: How were the html pages generated

Guideline ontology annotations: Document

- A "document" consists of a number of "sections"
- A "section" specifies the "root" node
- Two types of sections
 - Expansion of instances tree from the root node (e.g., start from instances of Guideline class)
 - Expansion of class hierarchy from the root node
Generating ontology annotations: Classes

- Select “classes of interest” for annotation
- Automatic generation of annotations, followed by manual editing
 - Selection and ordering of slots (for default text generation)

```
<Decision p_id= "SAGEDiabetes_01535">
  <label>
    Check if microalbumin testing due
  </label>
  <description>
    Checks to see if any urine protein test has been performed in the last yr, or if any urine protein test in ordered within the next month.
  </description>
  <decision_model>
    ....
  </decision_model>
</Decision>
```

XML generation

- XML format: class and slot names as tags
 - `<Decision p_id= "SAGEDiabetes_01535">`
 - `<label>`
 - Check if microalbumin testing due
 - `<description>`
 - Checks to see if any urine protein test has been performed in the last yr, or if any urine protein test in ordered within the next month.
 - `<decision_model>`
 -
 - `</decision_model>`
 - `</Decision>`
Alternative annotations

- For selected classes, define alternative annotations

```xml
<Decision p_id="SAGEDiabetes_01535"> Check if microalbumin testing due </Decision>
```

Context-sensitive XML generation
Use of templates to generate text

If absence of Goal HEMOGLOBIN A1C /HEMOGLOBIN.TOTAL:MFR:PT:BLD:QN:
set goal for 'HEMOGLOBIN A1C /HEMOGLOBIN.TOTAL:MFR:PT:BLD:QN:' as
(0, 7.0] Percent after NOW

Special treatment of graph widget

- Guideline recommendations depicted as graphical flowchart-like format
- Handling of graphs
 - Generate images as jpeg file
 - Save coordinates of nodes in special tags
 - Transform to clickable images in html
Document-generation integration into Protégé Guideline Workbench as a tab

Specify annotations knowledge base and XSLT file

Generate XML and HTML views of the guideline knowledge base

Assessment: Satisfy design criteria?

- The document-generation capability should be generic
- The document should expose the machine-readable parts of Protégé knowledge base
- Multiple views should be allowed
- There should be no modification to guideline knowledge base
- The document should be “readable” on the web or as printed document
Assessment

- Clinician feedback: Not enough contextual information about encoded guideline recommendations
 - Purpose of guideline graphs different from paper flowcharts
 - Interpretations and encoding decisions not explicit (no commented code)
- Maintenance problem
 - Annotation knowledge base has to track changes in guideline ontology
- Simplistic document model
- Brittle XML generation

Extensions: revised XML generation

- XML instances based on XML schema generated from guideline ontology
 - Schema-based transformations
 - “Protégé-independent” export format for guideline instances
- Export, not backend
 - Conflation of class and metaclass
 - Single inheritance of subtypes
 - Relaxation of constraints
 - Multiple allowed classes => most-specific superclass
 - No overridden facet constraints
Extension possibilities

- Better integration into Protégé
 - Use of Protégé’s :ANNOTATION facility
 - A wizard to guide creation of annotation knowledge base?
 - Maintenance of annotation knowledge base
- Document-oriented views of other large-scale Protégé structures?
 - Glossary of terms?
 - Clinical trial protocol documents?
 - Document-oriented knowledge acquisition?

Document-oriented views of Protégé knowledge base

- Simple annotations on Protégé ontology for document generation
- Results of first experiment encouraging
 - Not completely satisfactory for clinicians
 - Useful tool for knowledge engineer
 - PRODIGY document much more polished
- Potentially rich avenue of research