
Modeling Services with Protégé

Daniel Elenius
Department of Computer and Information Science

Linköping University
581 83 Linköping, Sweden

daele@ida.liu.se

1 Introduction

For some years now, the Semantic Web [1] has been
an active research field, promising to provide structure
to the multitude of information on the web. Noy, et
al. have shown how Protégé is an ideal tool for creat-
ing semantic web content in languages such as RDFS
and DAML+OIL [2]. These ontology languages have
now been superseded by the W3C Recommendation
OWL1 (Ontology Web Language), but the conclusion
still holds true—due to its plugin architecture and flex-
ible API, Protégé can easily adapt to changes in lan-
guage specifications, while retaining its familiar frame-
based conceptual view of ontologies. The support for
OWL in Protégé is excellent, with the OWL Plugin,
and tools such as OWLViz and OWLWizard2.

In parallel with the evolution of the Semantic Web,
web services have become a well-known concept. The
aim is to connect service providers and service con-
sumers on the web and making business processes more
efficient by automating computer-to-computer interac-
tions, using well-defined XML-based protocols such as
WSDL3 and SOAP4.

In recent years, these two fields have spawned the
semantic web services [3] research field. The idea is
that if web content can be marked up with semantic
information to improve searches on the web, then web
services could be similarly marked-up in order to im-
prove the intelligence and connectivity between service
providers and service consumers on the web.

The focus of semantic web services research is cur-
rently on the OWL-S [4] ontology (which is in version
1.0 at the time of writing), which we give an overview
of next.

1http://www.w3.org/TR/owl-features/
2These, and other Protégé plugins, are found at http://

protege.stanford.edu/plugins.html
3http://www.w3.org/TR/wsdl
4http://www.w3.org/TR/soap12-part1/

2 An Overview of OWL-S

The OWL-S ontology consists of four main classes that
specific services should instantiate. (Alternatively, ser-
vice providers may create subclasses of the OWL-S
classes and instantiate those instead).

• Service, with some basic concepts that tie the
parts of an OWL-S service description together
and holds a textual description of the service.

• Profile, which has properties used to describe what
the service does—what it provides clients, and
what it requires of them. More specifically, a ser-
vice profile presents the inputs, outputs, precondi-
tions and effects of a service. This information is
used for matchmaking, i.e. to find an appropriate
service based on its capabilities.

• Process, which has properties used to describe how
the service works, i.e. what happens when the
service is used. Services can be described as a
collection of atomic or composite processes, which
can be connected together in various ways, and
the data and control flow can be specified. Service-
seeking agents can use this information to perform
a more in-depth analysis of the service, to compose
several services to perform a task, to coordinate
the activities of the services, and to monitor their
execution.

• Grounding, with properties used to specify how the
service is activated, including details on communi-
cation protocols, message formats, port numbers,
etc. This ’abstract grounding’ is usually tied to a
’concrete grounding’ in the form of a WSDL inter-
face description.

The figure below shows how the different parts of the
OWL-S ontology fit together.

1



Figure 1: The main classes of the OWL-S ontology.

3 OWL-S Issues

Unfortunately, modeling services with OWL-S in Pro-
tégé is not as straightforward as the above description
indicates. To understand why, we first need to discuss
the different sub-languages of OWL—OWL Lite, OWL
DL, and OWL Full5. These three sub-languages have
increasing expressiveness, but also increasing complex-
ity. OWL Lite is a subset of OWL DL, which is a
subset of OWL Full, the most expressive of the three
languages. OWL DL is so named for its correspondence
to Description Logics [5], and provides maximum ex-
pressiveness while retaining computational complete-
ness (all conclusions are guaranteed to be computable)
and decidability (all computations will finish in finite
time). While OWL DL is preferable over OWL Lite,
OWL Full introduces unwanted complexity, as well as
some constructs, such as classes of classes, that are
controversial from an ontology engineering perspective.
OWL DL has good tool support, both for ontology edit-
ing, and from inference engines such as Racer [6]. A
problem with OWL-S is, as the reader may have sus-
pected by now, that it makes use of OWL Full con-
structs. Protégé does not support OWL Full, only
OWL DL, and OWL-S is therefore not immediately
useable with Protégé, or most other editing tools or
inference engines. However, work is underway (with
OWL-S 1.1) to increase the tool compatibility of OWL-
S and make it more (hopefully completely) OWL DL
compliant. Due to space limitations, we will not go
into further details on this here.

Another issue, discussed in [4], is that OWL does
not give constructs that are sufficiently rich to express

5The differences between these languages are further dis-
cussed in the OWL Language Reference, http://www.w3.org/

TR/owl-ref/, Appendix E.

data flow in OWL-S. OWL-S therefore expands slightly
upon OWL semantics and in some sense, it can be
thought of as an extended language, requiring special-
ized reasoning methods in the most general case.

A third issue when it comes to modeling with OWL-
S concepts is that it often becomes hard to get an
overview of how the different parts connect to each
other. For example, the same parameter (such as an
input to a process) may be referenced in several places,
and the control flow of composite processes may be of
significant complexity.

4 Future Directions

We here discuss different ways in which semantic web
services can evolve, and what impact these develop-
ments could have on Protégé.

4.1 Web Services Orchestration

A field that is closely related to semantic web services
is industry initiatives for web service orchestration [7],
with languages such as BPEL4WS6. Orchestration is
the assembling of different web services that make up
a business process, under one party’s control. The idea
is that the process logic, and the web services perform-
ing the work, should be separated in order to promote
flexibility. BPEL4WS specifies a syntax for explicitly
defining such compositions in an XML-based format.
To acheive this, BPEL4WS must represent much of
the same type of information that OWL-S deals with,
such as the inputs and outputs of processes and sub-
processes. However, BPEL4WS lacks the expressive
semantics of OWL-S, and thus cannot support reason-
ing about services, and automatic composition of ser-
vices. OWL-S, on the other hand, does not have sup-
port for BPEL4WS features such as persistence, trans-
actions, or exception handling. For these reasons, com-
bining OWL-S and BPEL4WS, or similar languages, is
a promising direction for future research, as shown by
[8].

4.2 Rules

A powerful extension to the semantic web in general,
and semantic web services in particular, would be to
layer rules on top of domain ontologies. Rule-based
systems are not a new invention, but it is only recently
that researchers have tried to integrate rules with on-
tologies for the semantic web. Encoding rules in on-
tologies in a standard format would enable interoper-

6http://www-106.ibm.com/developerworks/library/

ws-bpel/

2



ability, reuse and exchange of rules, similar to the in-
teroperability of domain ontologies written in OWL. It
is also good knowledge engineering to make knowledge
explicit—encoding the rules in ontologies rather than
hard-coding them into rule-based systems. Most im-
portantly, an ontology representation language for rules
would also mean easier integration of rules and domain
knowledge. Currently, specific translations have to be
used, e.g. OWLJessKB7 to load OWL ontologies into
the Jess [9] rule-based system.

This development of rules has a direct impact on
service modeling. OWL-S needs a rule language for
at least two purposes: To express logical constraints
and conditions on outputs and effects of processes; and
to control how resources are consumed and produced
by services. It is also likely that rules are useful more
generally to express details about services that cannot
be captured by static ontologies.

The DAML Rules project8 are developing a rules
language layered on OWL, called SWRL9 (Semantic
Web Rule Language, currently in version 0.5) which is
a candidate for integration with OWL-S.

4.3 Problem-Solving Methods

Another research area that shows at least superficial
resemblance to the issue of composing different ser-
vices is Problem-Solving Methods (PSMs) [10]. This
research focuses on reusable, domain-independent rea-
soning services. Domain independence is ensured by
using a method ontology describing the properties of
the method, and mapping ontologies that shows how
the inputs and outputs of the PSM connect to enti-
ties in different domain ontologies. It would be inter-
esting to explore this idea of mapping ontologies, to
map the inputs, outputs, preconditions and effects of
OWL-S services to different domain ontologies. The
development of PSMs is tightly integrated with Pro-
tégé through the PSM Librarian widget.

5 Discussion and Conclusions

We have argued in this paper that semantic web ser-
vices are an important paradigm, enabling automatic
service discovery and interaction on the web. How-
ever, we have seen that service modeling, especially
with new developments such as orchestration and rules,
and given the complexity of the OWL-S ontology, is not
entirely straightforward.

7http://edge.cs.drexel.edu/assemblies/software/

owljesskb/
8http://www.daml.org/rules/
9http://www.daml.org/2003/11/swrl/

How does these developments affect Protégé? Or,
conversely, how can Protégé have an impact on how ser-
vice modeling is done? We beleive that Protégé should
be extended (through the plugin architecture) to han-
dle service modeling explicitly. This can be done in
several complementing ways:

1. Services can be thought of as having an abstract
(semantic) description, and a concrete (pragmatic)
invocation interface. OWL-S, ontologies, and Pro-
tégé are well suited to handle the abstract part,
whereas technologies like BPEL4WS (or at least
a WSDL ’grounding’, as mentioned above) are
needed to make practical use of services. It would
be highly useful to extend Protégé to handle also
some aspects of the pragmatic part of services.
This could include such things as an integrated
WSDL editor, and an environment for actually ex-
ecuting composed services and seeing the results,
while still being able to iteratively enhance the ab-
stract conceptual model of the services.

2. The time it takes to get started with modeling
an OWL-S service could be greatly reduced if
there was an OWLWizard Wizard specifically en-
gineered for OWL-S. This could create instances of
the OWL-S service, profile, process and grounding
classes based on streamlined user input.

3. It would be extremely useful to have a specialized
graphical editing and visualization tool for OWL-
S ontologies within the Protégé framework. While
there already exist general-purpose visualization
plugins, such as OWLViz, OWL-S has some spe-
cific requirements for such a tool. First, it should
be possible to edit the service model, and not just
visualize it. Using the standard OWL Classes tab
to model a service is too limited for complex ser-
vice models. An example of where OWL-S-specific
extensions could be useful is when an input param-
eter is added to an OWL-S process. Often, the
same parameter is also added to the profile and
grounding of the same service. In an OWL-S edit-
ing environment, a dialog box could ask the user
whether this should happen. Furthermore, the ed-
itor could support drag-and-drop composition of
services, and a reasoner could be invoked to see
which processes can be connected, and how.

All of the above extensions could be implemented in
an OWL-S tab plugin for Protégé in an integrated way.

We envision that service modeling will become more
important as more people come to realize the inherent
potential in intelligent services on the web. As a leading
modeling tool, Protégé will be expected to handle new

3



challenges in this field, and we have suggested ways
that Protégé could be extended to do this.

Acknowledgements

The preparation of the manuscript was supported by
Vinnova (grant no. 2002-00907) and by The Swedish
Research Council (grant no. 621-2003-2991).

References

[1] T. Berners-Lee, J. Hendler, and O. Lassila, “The
Semantic Web,” Scientific American, vol. 284,
pp. 34–44, May 2001.

[2] N. Noy, M. Sintek, S. Decker, M. Crubezy, R. Fer-
gerson, and M. Musen, “Creating Semantic Web
Contents with Protégé-2000,” IEEE Intelligent
Systems, vol. 16, March–April 2001.

[3] S. McIlraith and D. Martin, “Bringing Seman-
tics to Web Services,” IEEE Intelligent Systems,
vol. 18, pp. 90–93, Jan–Feb 2003.

[4] The OWL Services Coalition, “OWL-S: Semantic
Markup for Web Services,”tech. rep. http://www.
daml.org/services/owl-s/1.0/owl-s.pdf.

[5] F. Baader, D. Calvanese, D. McGuinness,
D. Nardi, and P. Patel-Schneider, eds., The De-
scription Logic Handbook - Theory, Implementa-
tion and Applications. Cambridge: Cambridge
University Press, January 2003.

[6] V. Haarslev and R. Möller, “RACER System
Description,” in Proceedings of the International
Joint Conference on Automated Reasoning, IJ-
CAR’2001, (Siena, Italy), June 2001.

[7] C. Peltz, “Web Services Orchestration and Chore-
ography,” Computer, vol. 36, pp. 46–52, October
2003.

[8] S. A. McIlraith and D. J. Mandell, “Adapting
BPEL4WS for the Semantic Web: The Bottom-
Up Approach to Web Service Interoperation,” in
Proceedings of The SemanticWeb - ISWC 2003,
(Heidelberg), pp. 227–241, Springer-Verlag, Octo-
ber 2003.

[9] E. Friedman-Hill, Jess in Action: Java Rule-Based
Systems. Greenwich, CT: Manning, 2003.

[10] M. Crubezy and M. Musen, Handbook on Ontolo-
gies, ch. Ontologies in Support of Problem Solving.

International Handbooks on Information Systems,
Springer-Verlag, January 2004.

4


