
1

Representation and Management of Reified Relationships in Protégé
- Extended Abstract -

Tania Tudorache <tania.tudorache@daimlerchrysler.com>
Knowledge Based Engineering Department, DaimlerChrysler AG, Berlin

Abstract

For the engineering domain, the basic knowledge representation concepts and methods are often not enough, richer
representations are needed in order to capture the complexity of a technical system. One requirement is the ability to
represent and support relationships between objects that can hold more information than simple slots, that are
addressable as objects and can be used in reasoning. This paper presents the current approach taken in Protégé for
working with reified relations and proposes their extensions with other common types of relationships. The paper also
investigates what kind of tool extensions and automations are needed in order to support reification.

1. I ntroduction and M otivation

Engineering domains tend to be quite challenging with respect to knowledge modeling requirements. Part-whole
relations, topological and functional models, different kinds of physical constraints, different views have to be taken
into account. Relevant information describes complex dependencies and the way objects are related to each other.
Meta-data like author, creation date, version, documentation, but also the type of a correlation (causal, functional, etc.),
priorities and other attributes are needed for capturing all aspects of the interconnection between objects in a technical
system. Therefore, the relation representation has to be updated, a more powerful mechanism like reification that allows
the addition of attributes to a relationship is needed.

An ontology editor should support the editing, management and visualization of reified relationships in an automatic
and transparent way for the user, which may expect the same services for them like the ones for “simple” relations
represented as slots. Also, an API for the programmatic access to the reified relationships should be defined as an
extension to the current API.

The full paper shows how the reified relationships are currently modeled in Protégé and proposes their extension with
other types of relations. It also addresses the problems that appear when using reified relationships, shows what
automation and consistency checking support is needed, and also suggests modeling and implementation solutions to
these issues.

The next section provides a background about modeling relationships, the definition and what types of relationships are
identified. The instruments for representing relationships in a frame-based system are also analyzed and small examples
are given. Section 3 enumerates and explains the requirements to an ontology editor for the support of reified
relationships. Section 4 analyzes the current way of representing a reified binary relationship in Protégé and based on it
proposes the modeling for other types of relationships which will be discussed in more detail in the full paper.

2. Background

This section gives a brief overview about representing relationships, presents different categorizations of relation types,
and describes the representational instruments in a frame-based system. The detailed description follows in the full
paper.

2.1. What Is a Relation?

In OKBC, a relation represents the dependency between concepts in a domain. The Frame Ontology identifies several
types of relationships together with their corresponding axioms. We can define several criteria for categorizing
relationships: cardinality (one-to-one, one-to-many, many-to-many), ordering (total-order, partial-order, no-order),
symmetry (symmetric, asymmetric, antisymmetric), transitivity (transitive, intransitive, weak-transitive), reflexivity
(reflexive, irreflexive), etc.

For the scope of this paper, only some types of relationships will be discussed and modeling schemas in Protégé will be
proposed in section 4.

2

2.2. Representation I nstruments for Defining Relations in a Frame-based System

In a frame-based system, slots are appropriate for the representation of binary relationships, as it results from the OKBC
definition of a slot: “Formally, a slot is a binary relation, and each value V of an own slot S of a frame F represents the
assertion that the relation S holds for the entity represented by F and the entity represented by V (i.e., (S F V) in KIF
notation).”
Other supporting mechanisms for the representation of relations in a frame-based system are:
- Slot overriding at class - allows the customization of template slot facets at a class.
- Inheritance of template slots from class to subclass - the facet values of the slots at class will be inherited, and they

can be overridden in the subclasses.
- Hierarchies of slots – subslots – allow the user to specify restrictions on each member of a relationship. If a relation

is defined as a slot of type Instance at a class, then by the means of subslots, individual restrictions (e.g. cardinality)
can be imposed on each allowed class.

The normal way of modeling a relationship between class A and B in Protégé is by attaching a slot of type Instance and
allowed values B, to class A. If the user needs to make statements about this relationship, then a reified relation has to be
used. Reification is defined as “regarding something abstract as a physical thing” , “ thing-ifying” , or turning something
as complex as a relationship into an object to be addressed and exchanged. By reifying a relationship, a relation object
is being used in the representation. One level of indirection is being introduced, but the relationship can now be
addressed as an object, can hold attributes, and it can be used in reasoning. The representation of reified relationships is
discussed in section 4.

3. What is Needed in Protégé for the Support of Reified Relationships?

The same mechanisms and operations as for the normal slots should be defined for the reified relationships in Protégé.
This means that a standard modeling of the reified relationships is needed, on which all the automations and
implementations can be based. The full paper will suggest reified representations for the most common types of
relationships.

1. All the reified relation classes should be subclass of a built-in class, for example :RELATION like it is now already
available. All the other types of reified relationships (directed, bi-directional, transitive, etc.) should be subclasses
of this built-in class. In this way, the identification of the relation classes is straightforward.

2. Template models for certain types of reified relationships should be defined, for example by enforcing some special
slot names, constraints, etc., like it is done now in the built-in class :DIRECTED-BINARY-RELATION with the
slots :FROM and :TO.

3. The inheritance and facet overrides of reified relationships are already supported, when taxonomies of relationship
classes are used. So, i f class A and B are connected through the reified class RelAB, and A1 and B1 are subclasses
of A, respectively B, then A1 and B1 can be related trough a subclass of RelAB. In this way, the facets constraints,
like the allowed classes for the :TO and :FROM slots, are inherited to the relationship subclass.

4. In a similar manner to the inverse-slot mechanism, the inverse of a reified relationship should be supported.

5. When creating visually or through the API a reified relationship between objects, the relationship class or instance
should be created automatically. All the needed slots of the relationship should be filled in automatically.

6. The automatic management of the deletion of a reified relationship. If an instance A involved in a reified
relationship is being deleted, than the relationship instance should also be deleted automatically. Otherwise, the
knowledge base will contain a lot of incomplete relationship instances. The management and consistency check of
the reified relationships, can be implemented using the listeners mechanism in Java for a runtime check, or at a
given time, some procedures, or rules can be run to remove the incomplete relationships.

7. The query plugins should be able to handle the reified relationships and should be able to “ jump” over the relation
object. This means that the syntax of the query languages has to be extended, to allow the user to ask for the related
object, or the relationship object.

The visualization plugins should also support this kind of relationships. There are already means in Protégé to visualize
the reified relations. One of them is using the InstanceTable and InstanceRow widgets, which can be configured in such

3

a way that a user sees only the related object to an instance. In the case of the directed binary relation, the user can only
see the :TO slot of the relationship instance. But, the editing and inserting of a new relationship can not be as easily
done, since the user has to create himself the relationship instance and fill in correctly the relationship own slots.

4. Representation of a reified relationship in Protégé

Reifying a relationship is making an object out of it, in this way it becomes addressable, attributable, and can be used in
reasoning. In a frame-based environment, a reified relationship is represented as an object. The definition of the
relationship follows at the class level. For actually binding instances between them, the instantiation of the relation class
has to follow, in this way obtaining an instance of a relationship. In the following, the architecture of a reified
relationship is given starting from a simple example – the directed binary relationship, that is already available as a
built-in class in Protégé. (Fig. 1)

The :DIRECTED-BINARY-RELATION class contains two predefined template slots, the :TO and :FROM slot. Figure 1
shows how to build a reified relationship between class A and class B through the relation named fromAtoB. The
template slots are of type Instance. The allowed class for the :FROM slot is A, for the :TO slot is B, and for the
fromAtoB slot, the allowed class is RelAB. Attributes that describe the relationship between A and B, can be added as
template slots to class RelAB.

The directed binary relationship has been used here as an example, because it is easy to understand, the relation class is
built-in in Protégé and it is already supported by some visualization plugins. In a similar way, other types of reified
relationships can be defined. The differences come from the consistency conditions that need to be satisfied by the
relationship structure (A, B and RelAB) in order to be valid, and the automations needed to build such a relationship.

The full paper will discuss the modeling of other common types of reified relationships: an improved directed binary
relation using inverse slots, where the :FROM slot will be inferred; the modeling of the bi-directional, inverse
relationship which is analog to the inverse-slot mechanism, but applied to the reified relationships; the representation of
multidirectional symmetric relationships and the representation of components connections through ports.

A challenge when working with reified relationships is the identification of the elements that belong to the “ internal”
representation of the relation, that are needed for the interpretation of the relationship. This can be solved by suggesting
some standard modeling for the most common types of relationships, and by using some naming conventions (e.g.
:FROM and :TO for the directed binary relation). The full paper will propose another possible solution by using special
types of slots (meta-slots) to represent the internal structural elements of a relation object.

5. Conclusions

The reified relationships are an essential representation mechanism for the engineering domain, where the dependencies
between the objects are very complex. Therefore, some standard modeling “recipes” for these relationship types are
needed together with a corresponding tool support. The full paper analyses the most common types of reified
relationships and suggests modeling solutions in Protégé. As future steps, the extension of the current Protégé API for
the programmatic access to the reified relationships should also be defined.

Class BClass A

fromAtoB

RelAB

:FROM

:TO

Inst. B1Inst. A1

fromAtoB

Inst. RelAB1

:FROM

:TO

Class level

Instance level

Fig. 1. Representation of a reified relationship. Definition at the class level, usage at instance level.

