Organization Analysis with Protégé

Towards “Living” Theorizing?

by Vladimir Diatlov for
Sixth International Protégé Workshop
7-9th July 2003
Attempt of Organization Analysis

- Review of organization studies to create ontology structure
 - Processes, structures and boundaries framework (Pettigrew et al. 2000)
 - Interdependence as a denominator for organization context
- Populating ontology with empirical data
- Protégé for leveraging of knowledge of organisation studies domain
 - Maps and relations among concepts – easier reframing and new connections
 - New angles – new ideas
- Protégé as an R&D tool rather than an application to edit a stable ontology
Empirical Case: Data Collection and Generation

- Documentary Analysis (intensive, Intranet, 700 pages of raw data)
- Structured Interviews (25, 1 hour on average)
- Observation (branch work, physical structure, visual tools like wall with project management documentation)
- Participation (work with information systems)
- Talks, context study, notices…
- Process and obstacles:
 - Information requirements and interpretation
 - Get all information needed while access is active
 - Preparation for interviews
From Literature Review: Organisation Context and IT

<table>
<thead>
<tr>
<th>Processes</th>
<th>Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institutionalization processes and IT</td>
<td>Social structure</td>
</tr>
<tr>
<td>Isomorphism and imitation</td>
<td>– Routines</td>
</tr>
<tr>
<td>Strategising</td>
<td>– Norms</td>
</tr>
<tr>
<td>Decision-making</td>
<td>– Rules</td>
</tr>
<tr>
<td>Integration</td>
<td>– Controls</td>
</tr>
<tr>
<td>Communication</td>
<td>– Relations</td>
</tr>
<tr>
<td>Coordination</td>
<td></td>
</tr>
<tr>
<td>Collaboration and teamwork</td>
<td>Work Organisation through information lens:</td>
</tr>
<tr>
<td>Learning</td>
<td>– Authority Hierarchy</td>
</tr>
<tr>
<td>Culture</td>
<td>– Information Access</td>
</tr>
<tr>
<td>Power</td>
<td></td>
</tr>
<tr>
<td>Structuration</td>
<td>IT Function</td>
</tr>
<tr>
<td>Interpretation</td>
<td>– Application routines</td>
</tr>
<tr>
<td>Sensemaking</td>
<td>– Reliability routines</td>
</tr>
<tr>
<td>Information processing</td>
<td>– Learning and training routines</td>
</tr>
<tr>
<td>Information and knowledge management</td>
<td>– Innovation routines</td>
</tr>
<tr>
<td></td>
<td>– Evaluation routines</td>
</tr>
<tr>
<td></td>
<td>– Controls</td>
</tr>
<tr>
<td></td>
<td>– Relations among immediate and adjacent co-workers for:</td>
</tr>
<tr>
<td></td>
<td>– IT support</td>
</tr>
<tr>
<td></td>
<td>– Teamwork</td>
</tr>
<tr>
<td></td>
<td>– Workflow (specialization)</td>
</tr>
</tbody>
</table>

July 2003 by Vladimir Diatlov
Ontology of Organization Elements

- Using Protégé “knowledge acquisition” and object-oriented ontology building software
- A Semantic Web development from Stanford University
- Becomes recognized standard in ontology building
Ontology of Organization Elements (graph)
Ontology Descriptive Statistics

What Does It Say?

Entered entities, mostly dependencies

<table>
<thead>
<tr>
<th>Summary</th>
<th>System</th>
<th>Included</th>
<th>Direct</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classes</td>
<td>14</td>
<td>29</td>
<td>43</td>
<td>86</td>
</tr>
<tr>
<td>Slots</td>
<td>33</td>
<td>19</td>
<td>8</td>
<td>60</td>
</tr>
<tr>
<td>Facets</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Instances</td>
<td>0</td>
<td>5</td>
<td>950</td>
<td>955</td>
</tr>
<tr>
<td>Frames</td>
<td>59</td>
<td>53</td>
<td>1001</td>
<td>1113</td>
</tr>
</tbody>
</table>

Degree of interdependence in described structure: entity has X references and referred by Y times

Characteristics per entity/dependence

Per object like "employee" or "unit-unit task relation"
Protégé Facilities for Theorizing

- Parent-child relations – for concept decomposition
- Multiple inheritance – for linking concepts (:Norm and :Symbol are elements of structure and cultural processes both)
- Reconfiguration of facets, when attaching a slot to various frames (down to class hierarchy)
- Abstract classes – for auxiliary and root concepts
- Meta-classes – for properties of concept *per se*, not instances
- Self-reflexivity for processes: a class is also an *individual* of itself with own slots/properties – “power points/increases itself”
Use of Facilities. Design and Modelling Choices

- Creating ontology means design choices
- No “grand” over-loaded classes for complex concepts
 - Interdependence as a conceptual link – meta-class (plan)
 - Interdependence as a root concept – abstract class (also “structure,” “task,” or “transaction”)
 - Interdependence as a task relation among workers, a concrete link – class/subclasses as types
 - Interdependence as a reified link – subclass of:RELATION
 - Interdependence as a link enacted in particular real context – instance
- Slots with subclasses of :Structure are used for description of subclasses of :Process
- Reified relations: special classes, not slots
- When create ontology or model – TRACE CHOICES, heuristics and conventions!!!
Example: Task and Authority Interdependence

- Interdependence as a root concept (analysis versatility and multiplicity): “Each relation like employee-unit, unit-unit or business process ownership contributes to various interdependence patterns to interpret.”

- Example of research-valuable conclusion: “high amount of enacted interdependencies for business processes definition for core IS replacement initiative highlights its political quality.”
“Living Theorizing?”

- **Dynamism**
 - Dynamic networks of concepts that could be visualized (TVizGraph plug-in)

- **Versatility and multiplicity**
 - Ease of data restructuring or just reframing how one would look at it
 - Keeping track of meanings and their juxtapositions behind a model demands significant knowledge of domain (organization theory)

- **Visibility**
 - Traditional “research models” may take decades of text pages to describe
Ontology-based Research?

- Concept of ontology is traditionally used to delineate “what” is studied in philosophy, social sciences, and organization studies
 - Independent reality, factors, constraints – objectification, visibility, positivism
 - Socially constructed multiple reality – every ontology is only one possible view on knowledge domain – dynamism, versatility, multiplicity, interpretivism

- Ontology as a research method like case study, ethnography or survey

- Validity of ontology-based representation – procedures of data entry and modelling choices are important (“framework from literature,” “data from documents and interviews”)
Data Leveraging

- Reusing ontology-based data – high
 - Data is structured

- Sharing ontology-based data – low?
 - Every ontology is based upon complicated, contextual and “tacit” knowledge – difficult to re-make sense from outside

- Standardized ontologies for transfer of empirical data – within a project or well-established standards are needed

- Technological issues
 - Weak query engine - Protégé Axiom Language (PAL Queries and EZPal tabs), Formal Concept Analysis, F-logic and Prolog are yet complicated for an end-user. What about functionality of SQL?
 - Export and import of structured but non-ontological data, like tables
Knowledge Acquisition?

- Being a “knowledge acquisition tool” or “knowledge base editing system” could encounter a critique

- Knowledge models and metaphors:
 - Object (Simon 1981)
 - Process (Weick 1995) and pattern (Snowden 2002)
 - Interpretation (Winograd and Flores 1986)
 - Relationship (Dilthey 1976)

- Contemporary approach to knowledge as a process poses it as socially recurrently constructed and context-bounded – inextricable

- Nevertheless “knowledge model”/architecture of Protégé is advanced and interestingly fits with theories of knowledge. See theorizing versatility and use of facilities above

July 2003 by Vladimir Diatlov
Paradigms, interpretative schemes or just languages (?) of computer scientists and “soft” scientists, including business school researchers

Translation is needed for the parties to recognize value, validity and applications. Some examples:
- Ontology: same word, variety of established meanings
- User requirements versus organisational context
- Intelligence for web/systems, metadata exchange versus corporate information management (broad and human)
- Knowledge management...what does it mean for parties?

Generic issue for research assisted with software, Semantic Web developments or elements of intelligence like automatic reasoning
Examples from Ontology: Interdependence Analysis

Author will readily address your personal enquiry on ontology details at v.v.diatlov@soton.ac.uk as examples are based on sensitive data.