
JessTab: Using Jess together
with Protégé

Henrik Eriksson



Background

Problems:
• Difficult to directly integrate problem solving 

and ontology development in Protégé
– Languages/shells need direct access to Protégé

• Difficult manage large/complex ontologies
– Ontology editors should be programmable



Background: What is Jess?

• Java Expert System Shell; based on CLIPS
• Forward chaining; production rules
• Fact-base and pattern matching
• Lisp-like syntax
• No support for object orientation

– The Cool subsystem of CLIPS not implemented

• Developed by Sandia Laboratories
– http://herzberg.ca.sandia.gov/jess/



Background – History
Protégé-IOPS5 Art

Cool

CLIPS Protégé-II

Java Protégé/Win
JavaJess KIF/OKBC/Clos

Protégé-2000
JessTabDescendants

Influences



Integration – Two possibilities

• Loose integration
– No changes to each representation model
– Translators between formats
– Independent software

• Tight integration
– Changes to representation models when needed
– Integrated software (e.g., same Java VM)
– Unified user interface



Approach – JessTab plug-in for 
Protégé

• Jess console window in Protégé
• Mapping instances to Jess facts
• Functions for knowledge-base operations
• Mirroring Jess definitions in Protégé 

knowledge bases
• Support for metalevel objects
• Support for methods and message handlers 

(coming)



Jess console window in Protégé



Defining classes and instantiating them
Jess> (defclass Person (is-a :THING)

(slot name (type string))

(slot age (type integer)))

TRUE

Jess> (make-instance john of Person (name "John") (age 20))

<External-Address:SimpleInstance>

Jess> (mapclass Person)

Person

Jess> (facts)

f-0 (object (is-a Person) (is-a-name "Person")

(OBJECT <External-Address:SimpleInstance>)

(age 20) (name "John"))

For a total of 1 facts.



Modifying slots

Jess> (slot-set john age 21)
Jess> (facts)
f-1 (object (is-a Person) (is-a-name "Person")
(OBJECT <External-Address:SimpleInstance>)
(age 21) (name "John"))
For a total of 1 facts.



Creating a second instance

Jess> (make-instance sue of Person (name "Sue") (age 22))

<External-Address:SimpleInstance>

Jess> (facts)

f-1 (object (is-a Person) (is-a-name "Person")

(OBJECT <External-Address:SimpleInstance>)

(age 21) (name "John"))

f-4 (object (is-a Person) (is-a-name "Person")

(OBJECT <External-Address:SimpleInstance>)

(age 22) (name "Sue"))

For a total of 2 facts.



Adding a Jess rule
Jess> (defrule twentyone
(object (is-a Person)
(name ?n) (age ?a&:(>= ?a 21)))

=>
(printout t "The person " ?n

" is 21 or older" crlf))
TRUE
Jess> (run)
The person John is 21 or older
The person Sue is 21 or older
2
Jess>



Functions for knowledge-base operations
mapclass
mapinstance
unmapinstance
defclass
make-instance
initialize-instance
modify-instance
duplicate-instance
definstances
unmake-instance
slot-get
slot-set
slot-replace$
slot-insert$
slot-delete$
slot-facets
slot-types
slot-cardinality

slot-range
slot-allowed-values
slot-allowed-classes
slot-allowed-parents
slot-documentation
slot-sources
facet-get
facet-set
class
class-existp
class-abstractp
class-reactivep
superclassp
subclassp
class-superclasses
class-subclasses
get-defclass-list
class-slots

instancep
instance-existp
instance-name
instance-address
instance-addressp
instance-namep
slot-existp
slot-default-value
set-kb-save
get-kb-save
load-kb-definitions
load-project
include-project
save-project
jesstab-version-number
jesstab-version-string
get-knowledge-base
get-tabs



Mirroring Jess definitions in Protégé 
knowledge bases

Your Jess definitions as 
first-class citizen in Protégé



Editing Jess definitions in Protégé

Jess rule editor in 
Protégé



Editing Jess definitions in Protégé (cont.)

Rule-editor subtab in 
JessTab



Support for Protégé metalevel objects

• JessTab support for metaclasses, metaslots, 
and metafacets

• Functions for instances work for classes too
– and for slots and facets

• Defining classes by instantiating metaclasses:
(make-instance Person of :STANDARD-CLASS

(:DIRECT-SUPERCLASSES :THING))



Printing abstract classes in Protégé

(mapclass :THING)

(defrule print-all-abstract-classes
?c <- (object )
(test (class-abstractp ?c))

=>
(printout t "The class "

(instance-name ?c)
" is abstract." crlf))

Map every 
class to Jess

Match every object

Test for 
abstract classes

Print matches



Modifying ontologies

Change the role to abstract for classes 
that have subclasses, but do not have any 
instances:

(defrule make-classes-abstract
?c <- (object (:NAME ?n)

(:ROLE Concrete)
(:DIRECT-INSTANCES ))

(not (object (:NAME ?n) (:DIRECT-SUBCLASSES)))
=>

(slot-set ?c :ROLE Abstract))

Concrete classes 
& no instances

No subclasses

Change role



Support for methods and message handlers

(defmethod add ((?a STRING) (?b STRING))
(str-cat ?a ?b))

Under construction

(defmethod add ((?a MyClass) (?b MyClass))
…)

(defmessage-handler MyClass get-foo ()
?self:foo)

(defmessage-handler rectangle find-area ()
(* ?self:side-a ?self:side-b))



Examples of applications

• Ontology engineering and reengineering
– Jess as macro/scripting for ontologies

• Importing ontologies
– Jess as input filter

• Semantic Web
• Problem-solving methods
• Agent frameworks

– JadeJessProtege



Tool Web/Library

Your system

Your tab

JessTab
FuzzyJess

PrologTab

JadeJessProtege

FloraTab

More Protégé 
plug-ins

More Jess 
extensions

Algernon

ProtégéJess

JADE



Ideas for future work

• Support for managing Protégé forms
• Improved GUI
• Multiple Jess engines
• Multiple knowledge bases
• Aspect-oriented functionality (e.g., pointcut

for message-handlers)
• ???



Trying JessTab

• Obtain Protégé
– Download from http://protege.stanford.edu/

• Obtain Jess
– Download from http://herzberg.ca.sandia.gov/jess/
– License required (commercial or free academic)
– Compilation required

• Get JessTab
– Download from http://www.ida.liu.se/~her/JessTab/



Summary

• JessTab: Protégé – Jess integration
• Manage Protégé ontologies and knowledge 

bases from Jess
• Rule-based reasoning in Protégé
• Protégé as graphical, object-oriented 

extension to Jess


	JessTab: Using Jess togetherwith Protégé
	Background
	Background: What is Jess?
	Background – History
	Integration – Two possibilities
	Approach – JessTab plug-in for Protégé
	Jess console window in Protégé
	Defining classes and instantiating them
	Modifying slots
	Creating a second instance
	Adding a Jess rule
	Functions for knowledge-base operations
	Mirroring Jess definitions in Protégé knowledge bases
	Editing Jess definitions in Protégé
	Editing Jess definitions in Protégé (cont.)
	Support for Protégé metalevel objects
	Printing abstract classes in Protégé
	Modifying ontologies
	Support for methods and message handlers
	Examples of applications
	Tool Web/Library
	Ideas for future work
	Trying JessTab
	Summary

