
A Protégé 4 Backend for Native OWL Persistence

Jörg Henß Joachim Kleb Stephan Grimm

Fraunhofer IITB FZI Research Center
Karlsruhe Germany for Information Technologies

henss@iitb.fraunhofer.de at the University of Karlsruhe
{kleb, grimm}@fzi.de

Abstract

We present a persistence layer for native storage and manipulation of OWL ontologies on top of
the OWL API and an associated integration of the first version of this OWL persistence layer into the
Protégé ontology engineering environment. This allows for an efficient handling of large ontologies
within the Protégé 4 environment even if they do not fit in main memory. The approach is based
on a direct mapping from native OWL constructs to database entries by utilising a framework for
object-relational mappings.

1 Motivation

There are numerous reasons that demand a scalable persistence layer for Protégé, e.g. the capability
to process large ontologies. Former versions of Protégé (3.x) come along with persistence solutions that
enable the database storage of ontologies. By evolving from version 3 to 4 - and thus from the former
frame based architecture to an architecture that supports the Web Ontology Language (OWL) inherently
- a gap emerges concerning the persistence of ontologies. Following the decision to abandon the frame
based approach, this calls for a redesign of the former database storage format.

In our approach to an OWL persistence layer, we utilise the OWL API1 [2] object model for the storage
of native OWL language constructs to derive an appropriate database schema. In particular we focus
on the axiomatic view given through the OWL API object model. We use an object-relational (O/R)
mapping to realise native OWL persistence as a database backend for the OWL API. Since Protégé 4
builds on the OWL API, this persistence layer can readily be used as a database storage solution for
Protégé. The reuse of the available store implementations for Protégé 3.x was not possible, as these
implement the CLOS Meta-Object Protocol2 [4, Ch. 5/6]. Also the use of available triple stores, like
jena3 or sesame4, seemed not appropriate as they share the same drawbacks as the CLOS model on the
database layer. In particular, the persistence solutions for those models are realised by the use of a single
table, which results in a major performance loss.

During the realisation, a major design issue was the non-invasive implementation by avoiding changes
on the OWL API elements, hence ensuring full compatibility. Moreover the approach provides a plug-in
for Protégé and thus an additional opportunity for ontology persistence without changing the Protégé
core code.

In the following Section we explain the advantages of a native OWL persistence layer and the reasons
for the chosen database schema. In Sec. 3 the integration of the database back-end in Protégé 4 is
explained. Section 4 entails the next development steps of the persistence solution and the conclusion.

2 Native OWL Persistence Layer

Native OWL persistence refers to a direct way of representing OWL language constructs in an underlying
storage layer one-to-one. This is in contrast to triple-based storage solutions, where an OWL ontology
is represented at the more fine-grained level of triples. Avoiding the conversion to the triple structure is

1http://owlapi.sourceforge.net/
2http://protege.stanford.edu/doc/design/jdbc_backend.html
3http://jena.sourceforge.net/
4http://www.openrdf.org/



«interface»
OWLDescription

-id

«table»
OWLObject

-uri

«table»
OWLClass

-operands

«table»
OWLNaryBooleanDescription

OWLObjectUnionOf

OWLObjectIntersectionOf

-operand

«table»
OWLObjectComplementOf

-values

«table»
OWLObjectOneOf

-property

«table»
OWLRestriction

-cardinality
-filler

«table»
OWLCardinalityRestriction

OWLDataExactCardinalityRestriction

OWLDataMaxCardinalityRestriction

OWLDataMinCardinalityRestriction

OWLObjectExactCardinalityRestriction

OWLObjectMaxCardinalityRestriction

OWLObjectMinCardinalityRestriction

OWLObjectSelfRestriction

-filler

«table»
OWLQuantifiedRestriction

OWLObjectSomeRestriction

OWLObjectAllRestriction

OWLDataSomeRestriction

OWLDataAllRestriction

-value

«table»
OWLValueRestriction

OWLObjectValueRestriction

OWLDataValueRestriction

«interface»
OWLPropertyExpression

-uri
-anon

«table»
OWLIndividual

«interface»
OWLPropertyRange

-subject
-property
-object

«table»
OWLIndividualRelationShipAxiom

OWLObjectPropertyAssertionAxiom

OWLNegativeObjectPropertyAssertionAxiom

OWLNegativeDataPropertyAssertionAxiom

OWLDataPropertyAssertionAxiom

-individual
-description

«table»
OWLClassAssertionAxiom

Figure 1: UML structure showing complex classes (blue dashed area) and ABox (red dotted area) axioms.
Classes stereotyped with �table� contribute a table to our schema.

a major advantage, as this allows for faster storage and retrieval of OWL ontologies, saving processing
time for conversion. Moreover querying the ontology can be speed up, as less (self-)joins on large triple
structures are required. Furthermore complex OWL expressions, like cardinalities5, can be stored in a
more compressed way. To achieve this nativeness, we build the representation of an OWL ontology in
our persistence layer on the OWL API object model as the basis for a mapping to database tables.

We propose the use of an object-relational (O/R) mapping approach for native persistence of OWL
ontologies, by mapping the OWL axioms of an ontology directly to a database schema and thus providing
an axiomatic view on the database level. Derived from that, entities included in these axioms have to be
persisted as well. By using cascaded insertions, a feature most common O/R mapping6 tools include, all
entities and axioms referenced by an inserted ontology axiom become equally persisted, this reflects the
axiomatic view on the ontology. Relationships between objects in an ontology are persisted as foreign
key references. We also gain several benefits from the usage of a relational database management system
(RDBMS), eg. as stated in [5] we can use the build-in support for transactions, access control, logging and
recovery. Beyond that, the query optimisation techniques of modern RDBMSs can be used to optimise
query performance, and thus provide better scalability compared to specialised RDF stores [10].

Schema Representation through O/R-Mapping We use the OWL API object model as conceptual
basis of our implementation. This close integration allows the user to directly interact with the persisted
ontology via the OWL API in the same way as with in-memory ontologies. The solution has been
seamlessly integrated in the OWL API (refer to Sect. 3). Ontology modularisation can be achieved by
using the OWL import mechanism, that even allows mixing in-memory and persisted ontologies in our
implementation.

The creation of the O/R mapping of OWL API objects to database tables, constituting our database
schema, was done in a bottom-up approach. The axiom types, respectively objects which are mapped,
are directly derived from the OWL API object model. Furthermore we added support for persistence of
SWRL rules in the same manner, as the OWL API supports these likewise.

The concrete classes for axioms and entities of the OWL API object model, as well as their corre-
sponding interfaces and abstract classes, constitute a class hierarchy. Hence our O/R mapping has to be
hierarchic as well. In order to realise this hierarchic mapping, we use the “One Class One Table” pattern
mixed with the “One Inheritance Tree One Table” pattern [3]. The resulting database schema consists of
56 tables, representing the hierarchic structure used. We tried to minimise the overall number of tables,
by coalescing class tables, sharing the same set of fields and the same parent class, in a single table. The
majority of tables in our schema is required for modelling TBox axioms, e.g. cardinality, range and do-
main restrictions or complex class descriptions, cf. Fig. 1. The ABox of the ontology constitutes a smaller
fraction of our schema. It consists mainly of the entity table for the individuals, named OWLIndividual,
storing the URIs, a type-of relation (OWLClassAssertionAxiom) asserting classes to individuals and a

5E.g cardinality restrictions are stored as 4 triples using a state of the art triple store
6Our implementation is based on hibernate (http://www.hibernate.org)



table representing the relationships of an individual (OWLIndividualRelationshipAxiom). Figure 1 shows
a simplified schema for these axioms (red subgraph). Interestingly, the latter has three fields (subject,
property and object) resembling a triple structure as proposed in [1].

For proper support of inheritance it is necessary to have a single table containing the primary key
of all objects of the ontology and their types (OWLObject). In consequence this table grows very fast,
leading to slower insertion performance. Vertical partitioning could be a way to reduce this performance
loss. Additionally to the OWL API object model hierarchy, we introduce an extra table containing meta
information about the ontology, e.g. its URI. Occurrences of redundancies in the persisted information
are very rare.

Related Approaches Compared to other database persistence solutions for OWL ontologies, like IBM
SOR [5] or Owlgres [9], it is remarkable that our approach yields a database schema quite similar to these
approaches. Though we focus on a direct manipulation in contrast to those systems being focused on
reasoning and querying tasks. Since our implementation already supports OWL 2 [7], as used in the OWL
API, we have a slightly higher count of axiom types and tables. Furthermore we did no conversion of
semantic equivalent axioms7, supporting the concept of the OWL API as ontology manipulation interface.
We expect a similar performance of our suggested schema, when used for those tasks8. An advantage of
our solution - compared to the basic database persistence of triples - is the reduction of joins in case of
queries and a higher selectivity on tables.

The choice of an O/R mapping as intermediate layer allows us to vary several design issues, in
particular concerning details of the database schema9 and caching, at deploy or run time. It should be
mentioned, that our database schema is only one of several possible schemata derivable from the OWL
API, because it is possible to refactor the database schema, e.g. choosing another pattern for inheritance
mapping [3]. This can be done without changing the implemented queries, as our O/R mapping layer
supports implicit inheritance. This ability makes our system more flexible than other solutions and allows
for performance tuning without changing the implementation.

«interface»
OWLOntology

+applyChange()
+getAxioms()
+...()

OWLDBOntology

«implements»

+createOWLOntologyManager()

OWLDBManager

+loadOWLOntology()
+createOWLOntology()
+canLoad()
+canCreateFromPhysicalURI()
+setOWLOntologyManager()

-manager
OWLDBOntologyFactory

«interface»
OWLOntologyFactory

«implements»

OWLDBOntologyFormat

«interface»
OWLOntologyFormat

«implements»

+createOntology()
+loadOntology()
+saveOntology()

OWLDBOntologyManager

«interface»
OWLOntologyManager

«implements»

OWLDBOntologyOutputTarget

«interface»
OWLOntologyOutputTarget

«implements»

+storeOntology()
+canStoreOntology()

OWLDBStorer

«interface»
OWLOntologyStorer

«implements»

«instantiate»

«instantiate»«instantiate»

«uses» «uses»

«instantiate»

«uses»

1

*

1

*

Figure 2: OWL API architecture

3 Integration into Protégé via OWL API

Our persistence solution is based on the object structure given through the OWL API, which it extends by
the possibility of database storage. For this extension, we take into account the design issues of the OWL
API following the design decisions of the predefined interface declarations. Figure 2 shows an overview
of the involved OWL API classes and interfaces. OWLDBOntology implements the OWLOntology-Interface
and offers a database-based realisation of an ontology. An object of this class can be created via the
OWLDBFactory. Thereby the OWLDBOntologyManager offers access to the specific database settings. Prior
to our modification, the OWL API only supported file-based formats as turtle, n-triple, rdf/xml, owl/xml,
etc. According to the design pattern we implemented the additional format (OWLDBOntologyFormat)
and thus enable the user to distinguish between the different persistence formats during runtime. The
OWLDBStorer allows for the persistence of arbitrary ontologies in a database, while the OWLDBManager

7E.g. equivalent class can be modelled as mutual subclass
8It is very likely that support for SPARQL-DL [8] will be integrated into the OWL API
9E.g. the naming of tables



enables the convenient management of the persisted OWL ontologies. Through these implementations
we are able to offer a seamless support of the database persistence and manipulation in Protégé.

We extended the Protégé-Open dialogue in order to offer an additional item “Open OWL Ontology
from Database”. In a descending dialogue - similar to the already known dialogues in Protégé 3 - the
user specifies the necessary database settings, as user-name, password, etc. Afterwards the ontology is
loaded from the persistence store and displayed in Protégé. We also enabled the creation of a database
ontology within Protégé.

The current implementation of Protégé 4 abolished the concept of project files. However there are
several reasons to continue this concept. Apart of the storage of the GUI layout, the database settings
could be stored, and reused to load the ontology next time Protégé is started.

Considering the collaborative development - already available in Protégé 3 via RMI - the support
of transactional changes could be an advantage. For example, by using a RDBMS we also gain the
transaction management capabilities and thus are able to realise the lost update problem.

4 Conclusion and Outlook

We presented our solution to enable database persistence for Protégé 4. Based on the OWL API we
implemented a consequential extension for database storage that can be reused in Protégé. We concen-
trated on the advantages of an OWL-focused database schema for native owl constructs. The prototype
of our application is available for the community at http://www.fzi.de/downloads/ipe/owldb.zip.

A further optimisation of our database schema by analysing frequent api-calls within usage scenarios
seems to be possible. Furthermore it has to be investigated, if our implementation is suitable for rule
based reasoning as proposed in [5], e.g. using the rules defined in OWL 2 RL [6].

Acknowledgements

Research was funded by the German Ministry of Economics BMWi as part of the THESEUS Project
(01MQ07019).

References

[1] S. Auer and Z. G. Ives. Integrating ontologies and relational data. Technical Report MS-CIS-07-24,
University of Pennsylvania Department of Computer and Information Science Technical, 11 2007.

[2] M. Horridge, S. Bechhofer, and O. Noppens. Igniting the OWL 1.1 Touch Paper: The OWL API.
In C. Golbreich, A. Kalyanpur, and B. Parsia, editors, OWLED, volume 258 of CEUR Workshop
Proceedings. CEUR-WS.org, 2007.

[3] W. Keller. Mapping objects to tables - a pattern language. In Proc. Of European Conference on
Pattern Languages of Programming Conference (EuroPLOP)97, 1997.

[4] G. Kiczales. The Art of the Metaobject Protocol. The MIT Press, July 1991.

[5] J. Lu, L. Ma, L. Zhang, J.-S. Brunner, C. Wang, Y. Pan, and Y. Yu. SOR: A Practical System
for Ontology Storage, Reasoning and Search. In VLDB ’07: Proceedings of the 33rd international
conference on Very large data bases, pages 1402–1405. VLDB Endowment, 2007.

[6] B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz. Owl 2 web ontology language:
Profiles. World Wide Web Consortium, Working Draft WD-owl2-profiles-20081202, December 2008.

[7] B. Motik, P. F. Patel-Schneider, and B. C. Grau. Owl 2 web ontology language: Direct semantics.
World Wide Web Consortium, Working Draft WD-owl2-semantics-20081202, December 2008.

[8] E. Sirin and B. Parsia. Sparql-dl: Sparql query for owl-dl. In C. Golbreich, A. Kalyanpur, and
B. Parsia, editors, OWLED, volume 258 of CEUR Workshop Proceedings. CEUR-WS.org, 2007.

[9] M. Stocker and M. Smith. Owlgres: A scalable owl reasoner. In C. Dolbear, A. Ruttenberg, and
U. Sattler, editors, OWLED, volume 432 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

[10] J. Zhou, L. Ma, Q. Liu, L. Zhang, Y. Yu, and Y. Pan. Minerva: A scalable owl ontology storage
and inference system. In ASWC, pages 429–443, 2006.


