
Importing Spreadsheet data into Protégé : Spreadsheet
plug-in

Jay (Subbarao) Kola MBBS. (PhD), Alan Rector MD, PhD.
School of Computer Science, University of Manchester, Manchester M13 9PL, UK

Abstract

Tabular data offers a popular and alternative format of capturing knowledge. More recently,
spreadsheets are an increasingly popular format of storing tabular data. This is especially the
case for domain experts who do not want to learn the intricacies of databases, frame based
models or even OWL (Web Ontology Language)[1] models. In this paper, we discuss some of
the limitations of using tabular models in representing knowledge and a plug-in for Protégé
that allows knowledge authors to migrate knowledge captured in spreadsheets into Protégé.

Introduction

As relational databases grow in popularity, much of the knowledge in knowledge-based
applications tends to be represented as relational tables. More recently, knowledge also tends
to be captured in spreadsheets as well as databases. However, these tabular models have their
demerits. OWL with its formal logic under pinning offers the following advantages, which are
only briefly discussed in the paper.

• Easy, intuitive way to capture knowledge using ‘sub-sumption’s and ‘defined classes’x.
• Ability to maintain and extend a knowledge corpus and ability to track effects of changing

a section of the knowledge base.
• Ability to infer knowledge with the help of a first order logic services built into a variant of

OWL (OWL-DL).

To this end, we built the “Spreadsheet plug-in” for importing knowledge held in spreadsheets
into Protégé [2]. This plug-in is designed to work in Protégé-4a, which is the latest version of
the Protégé Knowledge Editor, currently being developed at Manchester University [3].

We consider a small example in Occupational Health, which relates diseases to their causative
agents and the industries involved. For example, we know Pigmentation is caused by Arsenic
and Black Pigmentation is caused by Coal Tar. Coal Tar actually consists of; Asphalt and
Pitch. If we wanted to relate this in tables, we would need to create a table like Table 1.

If we say Glass product manufacturing and Electronic product manufacturing have exposure
to Arsenic and Construction Industry has exposure to Coal Tar Constituents; we need to
relate all these entities in another table as shown in Table 2.

We can already see that there is needless repetition of information in the tables. In reality we
might want to say that Pigmentation can also be of other types: Blue Pigmentation and
Yellow Pigmentation. We then say Blue pigmentation has specific cause Silver Salts and
Yellow Pigmentation has specific cause Dinitrophenol in addition to the general causes of
Pigmentation. This clearly means extending the existing table to include these new cases.

s Also referred to as ‘parent-child’ or ‘is-type-of’ relationships.
x A means of representing complex concepts using simple concepts and relationships
a Latest version of Protégé 4 and related plugins can also be downloaded at http://www.co-ode.org/downloads/

Cause Industry

Arsenic Glass product
manufacturing

Arsenic Electronic product
manufacturing

Coal Tar
Constituents

Construction Industry

Asphalt Construction Industry

Pitch Construction Industry

Clinical Finding Cause

Pigmentation Arsenic

Black Pigmentation Coal Tar Constituents

Black Pigmentation Asphalt
Black Pigmentation Pitch

Table 1: Disease-Cause relationship table

Table 2: Cause-Industry relationship table

We might also want to say Construction Industry can be of different types; Roof Construction
and Road Construction. This means rewriting all the tables that we have created to include
the additional industries and the process is laborious and cumbersome.

Methodology

The rough transformation of the same tabular information into an OWL-DL ontology using
hierarchies and restrictions will look like :

In creating this transform into OWL-DL, we create class hierarchies and restrictions
corresponding to the knowledge in the tables above using the Spreadsheet plug-in. We now
explore how the Spreadsheet plug-in in Protégé helps us create this transform in a few easy
steps. On loading the corresponding spreadsheet file into the plug-in, we are presented with
an interface that looks like:

Parent Concept Child concept

Pigmentation Black Pigmentation

Pigmentation Blue Pigmentation

Pigmentation Yellow Pigmentation

Coal Tar Constituent Pitch

Coal Tar Constituent Asphalt

Figure 5 : Spreadsheet plug-in interface

Figure 1: Disease hierarchy
Figure 2: Restriction on Pigmentation

Figure 3: Causative agent hierarchy Figure 4: Restrictions on Black Pigmentation

Table 3: Parent-Child relationship table

Using a hierarchy relationship table (Table 3) might
address some of these issues but still does not avoid
all the problems with this representation. However
creating restrictions between the appropriate parent
classes in OWL-DL addresses this issue. For example,
creating a restriction ‘Pigmentation’ has_cause
‘Arsenic’ ensures that Black Pigmentation inherits
this as shown in Fig 4.

Importing concepts into an ontology :
To import concepts in the spreadsheet into the ontology, we use the “Column Mapping”
feature of the plug-in where we specify a parent concept for all concepts in a column. For
example to import the concepts in our spreadsheet, we assign a parent concept “Disease” to all
concepts in Column 1; Pigmentation, Black Pigmentation and Blue Pigmentation. Likewise we
assign “Causative agent” as parent concept for Column 2 concepts as shown in Figure 6. We
could also drag and drop existing concepts in the ontology against the column name to add
concepts under this concept. We could like-wise you OWL-Thing to add concepts under OWL-
Thing. This creates the concept hierarchies for the corresponding concepts.

Creating restrictions :
To create restrictions between concepts in columns, we use the “Restriction Generator”
feature of the Spreadsheet plug-in. To generate a restriction, we specify which column
concepts to add the restriction to and a corresponding column concept to add as filler value.
We finally specify a name for the restriction as shown in Figure 7.

Creating hierarchies:
To create hierarchies of concepts, we open the corresponding worksheet in the imported Excel
spreadsheet which is shown in Figure 8 .

We then use the “Restriction Generator” panel to create a parent-child relationship between
the concepts. In order to generate this, we specify a predefined relationship name in the
panel. This “IS_CHILD_CONCEPT_OF” relationship generates a hierarchy mapping the
concepts in the column on the left hand side of the relationship as children of concepts in the
column to the right hand side. This creates the hierarchies shown in Figures 1 and 3.

Using these features of the Spreadsheet plug-in transforms the content into an OWL-DL
ontology but to create an accurate representation, we need to edit some of the redundancies
that are inherited from the spreadsheet. For example, we need to remove the restriction ‘Black
Pigmentation’ has_cause ‘Arsenic’ created by the plug-in since this is inherited from
‘Pigmentation’ has_cause ‘Arensic’ since ‘Black Pigmentation’ is a child of ‘Pigmentation’.
Such redundancies are inherent to tabular models. These are best avoided by adopting OWL
as the modelling environment and good modelling strategies.

Conclusion

We present a short argument against modelling knowledge in tabular form and also provide
an easy to use tool (Spreadsheet plug-in) which enables knowledge modellers to import their
existing knowledge bases in spreadsheet format into Protégé-OWL.

References

1. W3C Consortium OWL Specification (http://www.w3.org/2004/OWL/)
2. Protégé Ontology Editor (http://protege.stanford.edu/)

3. Protégé 4.x : http://protege.stanford.edu/download/prerelease-alpha/prototype.html

Figure 8 : Concept hierarchy table
Figure 9 : Concept hierarchy creation in Plug-in

Figure 6: Assigning parent to column concepts Figure 7: Creating restrictions between column
concepts

