
A Heuristic Approach to Explain the Inconsistency in
OWL Ontologies

Hai Wang Matthew Horridge Alan Rector
Nick Drummond Julian Seidenberg

Department of Computer Science,
The University of Manchester,

Manchester M13 9PL, UK
{hwang,mhorridge,rector,ndrummond,jms}@cs.man.ac.uk

1 Introduction

Most modern OWL-DL reasoners can only provide lists of unsatisfiable classes without
offering any explanation as to why those classes are inconsistent. The process of deter-
mining the cause of inconsistent classes, what we refer to as debugging the ontology,
is a task that is left for the user. Even expert ontology engineers can find it difficult
to work out why a class has been marked as inconsistent. When faced with several in-
consistent classes in a moderately large ontology, the task of debugging can become
onerous indeed.

In this paper we present a heuristic approach for debugging OWL ontologies, which
can be utilised by tools and therefore go some way to automating the debugging pro-
cess, thereby alleviating the user from this troublesome task. We are are focusing about
debugging OWL, however the approach can be applied to general description logics.
Since the debugger is based on heuristic, it is not a complete solution. However it do
provide the explanation to a majority of inconsistent cases.

The heuristic we used is from the experience of a series of tutorials, workshops
and post-graduate modules we have presented over the past five years, teaching people
to use OWL-DL and its predecessors effectively. Based on our experience, a set of
common made mistakes have been identified. These common have been used as the
basic for developing a set of ontology debugging heuristics. These heuristics have been
used in an implementation of an ontology debugger for the Protégé-OWL [1] ontology
development environment, which with the assistance of a DL-reasoner, can generate
descriptions that explain the reasons for inconsistent OWL classes.

The debugger that has been developed treats the DL-reasoner as a ‘black box’. In
other words, the debugger does not know the details of any reasoning algorithms that
are used by the DL-reasoner. This ‘black box’ approach obviously has many benefits –
in particular it is reasoner independent, meaning that the debugger does not need any
modification, tuning or parameter setting in order to work with a specific reasoner. This
means that the end user is able to select any DIG compliant reasoner that is appro-
priate for their needs, without worrying about loosing any of the functionality offered
by the debugger, or being tied to a specific reasoner implementation. For example, the
debugger can still be used in conjunction with a reasoner that offers non-standard rea-



soning services, or a reasoner that has been optimised to work with a specific style of
ontology1.

2 Debugging process

 

 

OWL Reasoner 

Debuggger 

Check if OWL class 

is inconsistent 

Generate the debugging 

super conditions 

Identify the 

unsatisfiable core 

Determine the most 

general conflict 
Analyse the most general conflict 

and generate explanation 

Fig. 1.The debugging process

Figure 1 illustrates the main steps of the debugging process. The user selects an
OWL class for debugging, which is checked to ensure it is indeed inconsistent, and
that the user is making a valid request to the debugger. The debugger then attempts to
identify theunsatisfiable corefor the input class in order to minimise the search space.
Theunsatisfiable coreis the smallest set of local conditions (direct super classes) that
leads to the class in question being inconsistent. Having determined the unsatisfiable
core, the debugger attempts to generate thedebugging super conditions, which are the
conditions that are implied the conditions in theunsatisfiable core. Figure 3 presents
the rules that are used in generating thedebugging super conditions. The debugger
then examines thedebugging super conditionsin order to identify themost general
conflictingclass set, which is analysed to produce an explanation as to why the class in
question is inconsistent.

There are many different ways in which the axioms in an ontology can to lead an
inconsistency. However, in general, we have found that most inconsistencies can be
boiled down into a small number of ‘error patterns’. In summary the ‘error patterns’ for
class inconsistency may be boiled down to following reasons:

The inconsistence is from some local definition.

1. Having both a class and its complement class as super conditions.
2. Having both universal and existential restrictions that act along the same property, whilst the

filler classes are disjoint.
3. Having a super condition that is asserted to be disjoint withowl:Thing.
4. Having a super condition that is an existential restriction that has a filler which is disjoint

with the range of the restricted property.

1 For example, a large ontology which is conceptually simple, or a small ontology which is very
complex.



5. Having super conditions ofn existential restrictions that act along a given property with dis-
joint fillers, whilst there is a super condition that imposes a maximum cardinality restriction
or equality cardinality restriction along the property whose cardinality is less thann.

6. Having super conditions containing conflicting cardinality restrictions.

The inconsistence is propagated from other source.

1. Having a super condition that is an existential restriction that has an inconsistent filler.
2. Having a super condition that is a hasValue restriction that has an individual that is asserted

to be a member of an inconsistent class.

The debugger determines which of the above cases led to an inconsistency, and then
uses provenance information that describes how the debugging super conditions were
generated in order to determine the ‘root’ cause of the inconsistency.

Inconsistencies have ‘mechanisms’ of propagating throughout an ontology. For ex-
ample, any concept that is inconsistent and is used in an existential restriction, causes
that existential restriction to be inconsistent. This in turn causes the named class that
the existential is a super class of to become inconsistent, which causes all subclasses
of that named class to become inconsistent. These propagation mechanism can cause a
single inconsistency in a densely interconnected ontology to make large swathes of the
ontology inconsistent. The process of tracking down the root cause of such inconsisten-
cies then becomes incredibly time consuming and frustrating. The debugger therefore
has the functionality to trace an ontology subsumption hierarchy and existential graph
in order to discover the root causes of unsatisfiable classes.

Figure 2 shows the debugging tool.

 

Fig. 2.Debugging DeepPanBase class

References

1. Alan Rector Holger Knublauch, Mark Musen. Editing description logic ontologies with the
protege-owl plugin. InInternational Workshop on Description Logics - DL2004, 2004.



Rule 1: Named class rule
(a) IF C1 ∈ DSC(C) ∧ C1 v C2, whereC1 is a named OWL class

THEN C2 ∈ DSC(C)
(b) IF C1 ∈ DSC(C) andDisj(C1, C2), whereC1 andC2 are named

OWL classes
THEN ¬C2 ∈ DSC(C)

Rule 2: Complement class rule
(a) IF ¬C1 ∈ DSC(C), whereC1 is a named OWL class

THEN IF C2 v C1, THEN ¬C2 ∈ DSC(C)
IF C1 ≡ C2, THEN ¬C2 ∈ DSC(C)

(b) IF ¬C1 ∈ DSC(C), whereC1 is an anonymous OWL class
THEN NORM(C1) ∈ DSC(C)

Rule 3: Domain/Range rule
(a) IF ∃S.C1 ∈ DSC(C) ∨ ≥ n S ∈ DSC(C) ∨ = n S ∈ DSC(C),

wheren > 0, andDOM(S) = C2

THEN C2 ∈ DSC(C)
(b) IF ∃S.C1 ∈ DSC(C) ∨ ≥ n S ∈ DSC(C) ∨ = n S ∈ DSC(C),

and wheren > 0, INV (S) = S1 andRAN(S1) = C2

THEN C2 ∈ DSC(C)
(c) IF ∃S.C1 ∈ DSC(C) ∨ ≥ n S ∈ DSC(C) ∨ = n S ∈ DSC(C),

wheren > 0, andRAN(S) = C2

THEN ∀S.C2 ∈ DSC(C)
Rule 4: Functional/Inverse functional property

(a) IF ∃S.C1 ∈ DSC(C) or≥ n S ∈ DSC(C) or = n S ∈ DSC(C),
wheren > 0 andS is functional

THEN ≤ 1 S ∈ DSC(C)
(b) IF ∃S.C1 ∈ DSC(C) or≥ n S ∈ DSC(C) or = n S ∈ DSC(C),

wheren > 0 andINV (S) = S1, S1 is inverse functional
THEN ≤ 1 S ∈ DSC(C)

Rule 5: Inverse Rule
IF ∃S.C1 ∈ DSC(C) andINV (S) = S1,
andC2 w C1 andC2 v ∀S1C3

THEN C3 ∈ DSC(C)
Rule 6: Symmetric Rule

IF ∃S.C1 ∈ DSC(C) andS is a symmetric property,
andC2 w C1 andC2 v ∀SC3

THEN C3 ∈ DSC(C)
Rule 7: Transitive Rule

IF ∀S.C1 ∈ DSC(C) andS is a transitive property,
THEN ∀S ∀S.C1 ∈ DSC(C)

Rule 8: Intersection Rule
IF C ∧ C1 ∈ DSC(C),
THEN C ∈ DSC(C) andC1 ∈ DSC(C)

Rule 9: Subproperty Rule
(a) IF ∀S.C1 ∈ DSC(C) andS1 @ S, THEN ∀S1.C1 ∈ DSC(C)
(b) IF ≤ nS ∈ DSC(C) andS1 @ S, THEN ≤ nS1.C1 ∈ DSC(C)
(c) IF ∃S.C1 ∈ DSC(C) andS1 A S, THEN ∃S1.C1 ∈ DSC(C)
(d) IF ≥ nS ∈ DSC(C) andS1 A S, THEN ≥ nS ∈ DSC(C)

Rule 10: Other inference Rule
IF C1 can be inferred by any subset ofUC(C), whereC is a named class
THEN C1 ∈ DSC(C)

Fig. 3.Rules for the membership of Debugging Super Conditions (DSC).


