
Selective Ontology Viewer 
Krishnakumar Pooloth, Swaminathan Natarajan 

Software Engineering and Technology Labs, 
Infosys Technologies Ltd, 

Electronics City, Hosur Road, 
Bangalore 560100, 

India 
Phone : +91-80-28520261 
Fax : +91-80-28520740 

EmailID: {krishnakumarp,swaminathan_n01}@infosys.com 
 

Abstract 
As the value of ontology based information systems is beginning to be realized, the 
mechanism of visualizing ontologies assumes importance. For small ontologies, it 
might be easy for the user to browse the full ontology and find relevant information. 
Special visualization techniques are required for large ontologies to enable the user 
to find the relevant information quickly. In this paper, we present a new technique 
for visualizing relevant sub-sections of large ontologies. In our approach, a user 
defines a sub-section of ontology structure as a template. Specific instances can be 
visualized based on this template.   

Introduction 
As the enterprises are realizing the value of ontology repositories and ontology based 
applications, issues in visualization of ontologies assumes importance as a key area 
of research. Effective procedures or mechanisms for visualization of ontologies would 
greatly facilitate the adoption of ontology based solutions in the business computing 
arena.  

Protégé [1] is a very popular Ontology Editor developed at Stanford University. 
Ontologies can be edited as well as viewed using Protégé. It also provides a Java API 
to access the ontologies. Its plug-in architecture allows for extension of the tool with 
new features and capabilities.  

In this paper, we present “Selective Ontology Viewer” (SOV plug-in), an ontology 
visualization plug-in for Protégé. The plug-in uses JGraph [2], an open source graph 
visualization library. The plug-in is light-weight and lets the user select parts of 
ontology structure as templates and visualize instances based on this template.  

Existing Visualizers 
In this section we will briefly look at existing ontology visualization plug-ins for 
Protégé.  

OntoViz[3], based on AT&T’s GraphViz software, provides customizable graphical 
visualizations of Protégé’s ontologies. OntoViz generates graphs with very good 
clarity with little overlap between nodes. However, OntoViz graphs are static and 
non-interactive, making them non-suitable for certain purposes. 

Jambalaya[4] is based on ShriMP[5]. ShriMP is an information visualization technique 
for navigating abstracted structures of complex information networks with animated 
zoom. Jambalaya plug-in integrates ShriMP into Protégé. It offers interchangeable 
views of nested graphs for interactive ontology navigation. Jambalaya supports wide 
range of layout algorithms such as Tree layout, Radial layout etc.  

TGVizTab[6] is another visualization plug-in for Protégé which uses TouchGraph[7] 
for graph infrastructure. It supports handling different types of relations and edge 



Fig 01: SOV User Interface 

labeling. It allows for storing the generated graph in XML which can be viewed by 
other TouchGraph applications.  

Selective Ontology Viewer 
Often, users of a large ontology would want to look at it from different perspectives. 
For e.g., in newspaper ontology a user might want to look at reporting hierarchy of 
an Editor, or the contents in an instance of Newspaper etc. Selective Ontology 
Viewer was developed to help users easily view such specific relationships quickly. In 
SOV plug-in, the user defines a set of frequently required templates from the 
ontology structure. The template is a sub section of the ontology structure starting 
with a root class which is of primary interest for the template. This template is stored 
permanently as an XML file. Later, the user can visualize specific instances based on 
this template. The graph visualization is achieved using an open source Java graph 
library, JGraph1. 

SOV plug-in Features 
Figure 1 shows the user interface of Selective Ontology Viewer. The currently defined 
ontology templates are displayed on the left and visualized templates are shown on 

                                                
1 JGraph is the core graph visualization library of the JGraph suite. The main 
advantage of JGraph is that it is completely compliant to Java Swing API. JGraph is 
written in pure Java and provides key features such as zooming, cell 
collapsing/expanding, undo, event-handling, drag and drop support etc 



the right. Below, we elaborate on the features supported by the visualizer.  

Selective Viewing based on templates 

The main aspect of SOV plug-in is the capability to define templates which can be 
reused. The SOV templates can be defined as a sub-graph of ontology structure with 
a class being the sole root node. The graph could have infinite depth by traversing 
the slots of the root class which are 
of Instance Type. In other words, 
user selects specific paths in the 
ontology structure starting with a 
class as the root node. Figure 2 
shows the user interface for 
specifying a template.  

Persistence of visualization 
templates   

The SOV plug-in specifies an XML 
format for the templates and 
allows for saving of these 
templates so that they can be used 
across Protégé user-sessions. This 
enables easier usage compared to 
other plug-ins, since you don’t 
have to set up the visualizer each 
time you use it. 

This template can be used to 
visualize specific instances of the 
root class of the template. In the 
generated graph, instances would be displayed as nodes and the slots that specify 
the relationships between these instances would be represented using directed 
edges. For e.g., the relationship between an Editor and Reporter instance would have 
the instances as nodes and the slot “responsible_for” as a directed edge between the 
two. The Protégé’s Instance view of any instance in the graph can be seen by 
selecting the corresponding node. This view would be shown in the bottom panel of 
the plug-in.  

The plug-in supports visualization of recursive relationships. For e.g., in Newspaper 
ontology if there is reporting relationship between Editor A and B, the plug-in would 
automatically expand the reporting hierarchy of Editor B as well.  

Mapping icons to Classes 

The plug-in also allows the user to customize graph by mapping classes to icons. The 
icon would appear for the nodes if the class corresponding to the instance has been 
mapped to an icon. This can be used to associate specific icons classes such as 
Reporter, Editor, Section etc. Appropriate usage of image would render the graph 
more readable and easy to use.  

Layout Support 

The plug-in supports multiple options for graph layout based on common algorithms 
such as Sugiyama, GEM, Simulated Annealing etc. This is implemented by leveraging 
the support for layout algorithms in JGraph. 

Fig 2: Template Definition User Interface 



Easy Scrolling using graph miniature 

The user can click on the corner button of the scroll pane that contains the graph to 
see a miniature version of the graph. The miniature can be used to easily scroll the 
graph and find required information faster. 

Export as HTML 

Using SOV plug-in, a user can save the graph and the corresponding instances as an 
HTML file for offline viewing. 

Conclusion 
Easy and customizable visualization mechanisms would help in making the 
knowledge encoded in an ontology more accessible to end-users. In this paper we 
described Selective Ontology Viewer; a new Protégé visualization plug-in built using 
JGraph. It allows for explicit definition of templates which are sub-graphs of the 
ontology structure and visualization of instances based on these templates. 

References 
 
[1] Protege-2000, The Protégé website,Stanford Medical  

Informatics,http://protege.stanford.edu 
[2] JGraph, The JGraph website, http://www.jgraph.com 
[3] Sintek, M., OntoViz Tab: Visualizing Protégé 

Ontologies,http://protege.stanford.edu/plugins/ontoviz/ontoviz.html 
[4] Storey, M.-A.D., Musen, M.A., Silva, J., Best, C., Ernst, N., Fergerson, R. and 

Noy, N.F., Jambalaya: Interactive visualization to enhance ontology authoring 
and knowledge acquisition in Protege. In Workshop on Interactive Tools for 
Knowledge Capture, K-CAP-2001, (Victoria, B.C. Canada, 2001). 

[5] Storey, M.A., Wong, K., Fracchia, F.D., Muller, H.A.: On Integrating Visualization 
Techniques for Effective Software Exploration. Proc. IEEE Symp. on Information 
Visualization (InfoVis'97), Phoenix, Arizona, USA. 38-45, 1997. 

[6] Alani, H., TGVizTab: An Ontology Visualisation Extension for Protege. in 
Knowledge Capture 03 - Workshop on Visualizing Information in Knowledge 
Engineering, (Sanibel Island, FL, 2003), ACM, 2-7. 
 


