
Jambalaya Express:
Ontology Visualization-On-Demand

 Robert Lintern

 rlintern@uvic.ca
 Margaret-Anne Storey

 mstorey@uvic.ca

Chisel Group
University of Victoria,
Victoria, BC, Canada

Abstract

In this talk we explore the use of visualization as a
cognitive aid for managing ontologies and knowledge
representations. We focus on our most recent work to
provide visualization “on demand” for supporting
specific editing, maintenance and understanding tasks.
This contrasts with our previous approach of providing
overviews of ontologies for supporting exploration of
unfamiliar ontologies. We have made efforts to not only
reduce the amount of visual information shown in
Jambalaya’s views, but also to help ensure that this
information is more focused on a user’s current task or
concept of interest.

1. Introduction
Over the past several years the Chisel group at the
University of Victoria (www.thechiselgroup.org) has been
working in the area of ontology and knowledge-base (KB)
visualization. Our main KB visualization tool, Jambalaya,
is an extension of the SHriMP graph visualization toolkit
(www.thechiselgroup.org/shrimp) reconfigured as a plug-
in for Protégé with additional features to help increase
understanding of both regular Protégé projects and now
RDF/OWL projects.

In short, Jambalaya’s unique visualization approach
includes nesting of nodes based on any slot or property
types (or no nesting), smoothly animated zooming and
layouts, and the embedding of Protégé’s class and
instance/individual editors within the visualization itself.
Jambalaya also includes many of the base features found
in other graph or KB visualizations, such as filtering,
colouring and “styling” nodes and arcs by type, and
various graph layout algorithms.

While we are still concerned with the why and what of
visualizing ontologies, we have made an effort recently to
tackle some of the where, when and how of visualization.
Where should the visualization be present in the user
interface? When would the user want to see a Jambalaya-
like visualization? How can we ensure that a useful
visualization is easily accessible and repeatable?

We do not presume to have solved these fundamental
“visualization” issues, but have hopefully made some

changes to Jambalaya in the last year that lead us in the
right direction.

2. Scalability Challenges
Visualization-on-demand requires that Jambalaya remain
nimble; this requires some effort in tackling scalability
issues.

The scalability challenges that Jambalaya has been faced
with are not unlike those faced by many other applications
including the base Protégé system itself. Large
ontologies, especially those stored in remote databases,
bring these scalability issues to the forefront. In particular,
we have been working with the NCI Thesaurus
(ncicb.nci.nih.gov/core/EVS), a large OWL database
project stored on a remote server with over eighty
thousand classes, restrictions, and annotations; it has been
an excellent test-bed for bottlenecks in our code.
Examples in this presentation will be taken from the NCI
Thesaurus.

Fortunately we already have some techniques in place to
handle scalability issues. The general architecture of
SHriMP, Jambalaya’s underlying visualization engine,
has been planned from the beginning to load data
incrementally from large data sources, strictly on an as-
needed basis. It has also been designed from the start to
load data from a variety of sources with no assumptions
made on the speed at which data can be gathered. We
have endeavoured to keep this in mind while working in
the ontology domain, and provide confirmation dialogs to
the user whenever this constraint is likely to be violated.
For example, the user is warned before opening
Jambalaya’s Attribute Panel as it requires all concepts to
be loaded into memory. We have also attempted to show
progress for slow operations, and allow the user to cancel
them part way through.

The approach of nesting child nodes within their parents
affords incremental loading since information on child
nodes is obtained only when a parent is opened to show
its children.

We’ve made attempts to reduce not only what is brought
into Jambalaya’s display, but also to reduce the amount of
data coming into Jambalaya’s own data buffers by
implementing a layer of “data” filters.

3. Working Set, Express Views, and Drag-n-Drop
Recently, we have introduced the concept of “root
classes” to Jambalaya. This allows the user to essentially
choose a smaller working set and reduce the scope of data
shown in Jambalaya. For large ontologies, a user may be
only interested in visualizing the classes and restrictions
defined within and between a few subtrees of the
ontology. For example, in Figure 1 the scope of the
classes shown in Jambalaya has been restricted to the
Perhipheral_Nervous_System concept and the
Peripheral_Nervous_System_Part subtree.

In order to reduce the number of steps a user must
perform to elicit a useful view, Jambalaya’s main view
now provides some “express view” buttons to facilitate
easy switching between different views of a project. (See
fig. 1) For example, in the OWL domain, the user can
click the “Domain-Range” express view button to quickly
see how the OWL classes are related by the domains and
ranges of the project’s properties. Another express view
shows the is-a class hierarchy in a vertical tree.

“Express View” buttons

“Root Classes”

Figure 1. The Jambalaya Tab displays a portion of the
“has part” hierarchy of the NCI Thesaurus.

In addition to providing some default express views, we
will be adding the facility for users to define their own
express views by allowing them to create new buttons and
attach their own scripts – currently supported by
Jambalaya – to these new buttons. For example, in Figure
1, one of the express view buttons is specific to the NCI
Thesaurus and lays out the concepts in a horizontal tree
according to the “has part” hierarchy.

The choosing of root classes and the launching of express
views have been simplified by adding drag-and-drop
functionality to Jambalaya. The user can simply drag
classes from the Classes tree (a familiar view from
Protégé), on the left of the Jambalaya tab, and drop them
into Jambalaya’s main view to make these the root classes
of the main view. The user can also drag and drop these

classes onto the express view buttons themselves to
change the root classes and immediately invoke a express
view on this new “working set.”

4. Query View
In an attempt to make a departure from the Jambalaya’s
heavy-weight top-down visualizations we have
implemented a simpler graphical view that can be quickly
popped-up from anywhere in Protégé’s GUI (see fig 2).
This view takes a different approach than Jambalaya’s
main view to visualizing data in that it displays only
classes of interest to the user and their “neighbours” (i.e.
classes related to these classes of interest).

Figure 2. Jambalaya's Query View displaying the
Nasal_Cavity concept and its “neighbours.”

Figure 3. A GUI is provided to change the parameters
of the query used to populate the Query View.

We call this new view the “Query View” since it provides
a means for the user to specify various parameters for
determining classes of interest - for example, searching
class names using regular expressions - and parameters
for specifying how much of their neighbourhood to show.
(see Fig. 3) The user can restrict the query to certain node
and arc types, whether or not to use incoming arcs,
outgoing arcs, or both, and how many levels of
neighbours (i.e. the neighbours of neighbours etc.) to
show.

Figure 4. Jambalaya’s Query View can be popped-up
from a concept’s right-click menu.

In order to make the Query View more accessible it can
be popped-up from a class’ right-click menu (see fig 4)
and the parameters of the Query View are set
automatically to show how this selected class relates to
the rest of the ontology. For example, from the NCI
Thesaurus we can see all concepts related to the
Nasal_Cavity concept, such as Nose and Nasal_Septum,
by invoking the “Show Neighbourhood” action on
Nasal_Cavity (see fig. 2 and 4).

5. Ongoing and Future Work
We have always been interested in improving the
configurability of Jambalaya since it is difficult for us to
predict what would be considered a “useful” view for all
ontologies. Different domains, and the ontologies that
describe them, have different classes and slots (or
properties) of interest. For example, in the anatomy
domain it is important to observe the “has part” hierarchy.
Furthermore, ontologies can be designed in very different
ways depending on their intended usage and can be
described with many different “dialects,” especially in
Protégé with the use of meta-classes. Because of this
variability we cannot always predict a correct
configuration for Jambalaya. We envision in the future
having a user-specified mapping from ontology objects
and their attributes to Jambalaya’s visual components and
visual variables. For example, the user may want classes
that inherit from a particular superclass to be shown in a
certain colour.

We also envision support for certain user-defined “graph
transformations.” One simple example of a graph
transformation is to change the way that a reified relation
is displayed. In fact, Jambalaya already does this
automatically for subclasses of :DIRECTED-BINARY-
RELATION. Instead of showing the reified relation as a
node with :TO and :FROM arcs, these three items are
collapse into a single arc with a more descriptive type and
tool-tip. More support is needed for users to set-up and
configure these types of transformations themselves.

6. Discussion

At the end of our presentation, we will lead a
discussion on how visualization can be helpful (or not) for
representing and managing ontologies. In particular we
will focus on the challenges of providing task-specific
visualizations. The discussion may also delve into the

pros and cons of visualizing OWL ontologies using a
graph metaphor.

7. Acknowledgements

The Chisel group’s visualization work has previously
been supported by grants from the National Cancer
Institute’s Center for Bioinformatics.

8. References
1. Alani, H., TGVizTab: An Ontology Visualisation

Extension for Protege. in Knowledge Capture 03 -
Workshop on Visualizing Information in Knowledge
Engineering, (Sanibel Island, FL, 2003), ACM, 2-7.

2. Ernst, N.A. and Storey, M.-A. A Preliminary
Analysis of Visualization Requirements in
Knowledge Engineering Tools, University of
Victoria, Victoria, 2003, 6.

3. EZOWL Tab, The EZOWL website, Intelligent Web
Technology Research Team, Electronics and
Telecommunications Research Institute,
iweb.etri.re.kr/ezowl/

4. Kremer, R., Visual Languages for Knowledge
Representation. in 11th Workshop on Knowledge
Acquisition, Modelling, and Management (KAW '98),
(Banff, Alberta, 1998).

5. Piccolo, The Piccolo website, Human-Computer
Interaction Lab, University of Maryland,
www.cs.umd.edu/hcil/piccolo/

6. Protégé, The Protégé website, Stanford Medical
Informatics, protege.stanford.edu

7. Sintek, M., OntoViz Tab: Visualizing Protege
Ontologies,protege.stanford.edu/plugins/ontoviz/onto
viz.html

8. OWLViz Tab, Medical Informatics Group,
University of Manchester, www.co-
ode.org/downloads/owlviz/

9. Storey, M.-A.D., Musen, M.A., Silva, J., Best, C.,
Ernst, N., Fergerson, R. and Noy, N.F., Jambalaya:
Interactive visualization to enhance ontology
authoring and knowledge acquisition in Protege.
Workshop on Interactive Tools for Knowledge
Capture, K-CAP-2001, (Victoria, B.C. Canada,
2001).

10. Storey, M.-A.D., Wong, K., Fracchia, F. and Müller,
H., On Integrating Visualization Techniques for
Effective Software Exploration. in InfoVis '97,
(Phoenix, AZ, 1997), 38-45.

11. TouchGraph, The TouchGraph website,
www.touchgraph.com/

12. Treemap, The Treemap website, Human-Computer
Interaction Laboratory, University of Maryland,
www.cs.umd.edu/hcil/treemap/

