
Representing and Using Template-Knowledge
for a Medical Ontology in Protéǵe

Ronald Cornet
dept. of Medical Informatics

AMC - Universiteit van Amsterdam

Michel Klein
dept. of Artificial Intelligence

Vrije Universiteit Amsterdam

Abstract

We present a medical ontology that is used for registering health problems at intensive care units in hospitals.
Because of its flexible architecture it is necessary to be able to determine equivalence and subsumption automatically.
These two tasks require two types of knowledge to be encoded: definitional knowledge and template knowledge.
We discuss how both kinds of knowledge can be made explicit and used in Protéǵe, using the OWL language. In
our approach, we have to mix description logic (DL) style of knowledge representation with a frame-based style of
representation. The consistency between both is an important issue. Our aim with this paper is to demonstrate and
discuss approaches to augment DL-based representations with frame-based meta-knowledge.

1 Real-World Usage of Ontologies

DICE (Diagnoses for Intensive Care Evaluation) is an ontology regarding reasons for admission in intensive care.
Its primary applications are providing a means for registration and aggregation of patients’ reasons for admission.
In order to stimulate clinicians and nurses to provide as much detail as is known about a patient, a mechanism for
supporting post-coordination has been implemented, based on a (frame-based) representation that allows specification
of refinable characteristics. Aggregation is supported by means of definitional characteristics, that enable grouping
together reasons for admission that share common properties.

As the post-coordination mechanism allows for a multitude of ways to specify a reason for admission, it is nec-
essary to be able to determine equivalence and subsumption automatically. In order to realize this, a DL-based rep-
resentation is being investigated. Ideally, this will contribute to the development of an ontology that is consistent,
supporting highly detailed registration, allowing automated classification and instance querying.

As an example of the post-coordination mechanism, consider a patient being admitted to the intensive care depart-
ment with acute type B viral hepatitis. The mechanism provides various ways of constructing this expression, e.g.
as Viral Hepatitis,caused byHepatitis B virus,having courseAcute, as Acute Viral Hepatitis,caused byHepatitis B
virus, or even as Infection,located inLiver, caused byHepatitis B virus,having courseAcute.

2 Description Logic versus Frame-based Knowledge

The two tasks of automated classification and registering instance information mentioned in Section 1 require two
types of knowledge about a concept to be described: knowledge about its semantics, i.e. itsdefinitional knowledge,
and knowledge about the construction of instance data, which we calltemplate knowledge. These two issues are
related, but certainly not interchangeable. For example, consider the concept ‘wine’. ‘Wine’ can be defined as “the
fermented juice of fresh grapes used as a beverage” (Merriam-Webster Online Dictionary). For knowledge acquisition
purposes however, one wants to specify that the name, color, sugar, flavor, grape, maker, and body of the wine are
relevant properties of wine [2]. Red wine can be defined as “wine which has a red color”, and for red wine the tannin
level can be specified.

In the ontology introduced above, we use the description logic (DL) based characteristics of OWL to describe the
semantics of concepts. The benefit DL is the possibility of reasoning with defined necessary (and sufficient) properties
of concepts. At the same time, we used frame-based representations to represent template knowledge. Frames offer

1



the possibility of specifying relevant properties of concepts. However, when both are required, there is the need to
guard consistency between relevant (frame-based) properties and necessary (DL-based) properties.

3 Representing Template Knowledge

The template knowledge that is relevant in our ontology are the post-coordination rules. These can be seen as specifica-
tions of how subsumees of specific concepts in the ontology can be created by combining existing concepts. Concepts
that allow for post-coordination have a number of properties for which values are defined (i.e. the definitional knowl-
edge), and others for which ‘choices’ are defined (the ‘template knowledge’). For example,Viral Hepatitis is
described as follows:

Viral_Hepatitis
def: has_location: Liver
def: system_involved: Digestive_System
def: has_aetiology: Virus
templ: has_aetiology: >= 1 children-of

{ Hepatitis viruses,
Epstein-Barr virus,
Cytomegalo virus }

The lines following ‘templ’ describe that instances and subsumees ofViral Hepatitis can be defined using one or
more children from the listed concepts.

There are several ways in which such knowledge can be represented in Protéǵe/OWL. Each of them has a number
of disadvantages. We discuss three approaches below.

3.1 Using∀-restrictions

The first approach is to represent every template property via∀-restrictions in the specifications of the classes them-
selves, i.e. using theowl:allValuesFrom construct. This is logically correct because all subsumees and instances
should choose their values from the classes specified in the template property. However, conceptually a template
property is different from definitional knowledge. For example, consider the description ofViral Hepatitis in
the previous section, wherehas aetiology has a role both in the definition and as template property. Using this
approach, template properties are undistinguishable from definitional properties and different types of knowledge are
represented in the same way. Moreover, additional knowledge about the number of fillers for a template property
cannot be represented.

3.2 Domain of Properties

Another approach is to specify the union of all classes on which a template property can be applied as domain of
the property. The major drawbacks of this approach are that it provides a global specification instead of local (at
class level). As a result, it is not possible to specify different ranges for different classes. This can be overcome
for example by defining class-specific subproperties (e.g. viral-hepatitis-cause, having Viral Hepatitis as domain and
Virus as range), but this will lead to large numbers of properties.

3.3 Using Meta-Classes

A third approach is the use of meta-classes with additional property restrictions. In this approach, we define a
meta-classRefinableClass as subclass ofowl:Class and a meta-classTemplate with three properties:re-

finableProperty , valueType andmultiplicity . In the OWL abstract syntax the definition is as follows:

Class(RefinableClass partial owl:Class)
ObjectProperty(hasTemplate

domain(RefinableClass)
range(Template))

Class(Template partial

2



restriction(refinableProperty allValuesFrom(rdf:Property))
restriction(valueType allValuesFrom(owl:Class))
restriction(multiplicity allValuesFrom(xsd:int))))

Classes for which we want to represent template knowledge are made instances ofRefinableClass instead of
owl:Class . For these classes we can specify templates with actual values for the propertiesrefinableProperty ,
valueType andmultiplicity , in addition to the general class axioms (the definitional knowledge).

This approach has two disadvantages. First, by using meta-classes we do not stay inside the OWL DL sublanguage,
but we create an OWL Full ontology. As a result, DL reasoning cannot be done anymore on the ontology as a whole.

A second problem is the possible discrepancy between the definitional knowledge and the template knowledge. For
example, nothing in this approach prevents modelers to specify value for thevalueType property that are inconsistent
with the values defined in the restrictions on the class itself.

4 Representing DICE in Prot́eǵe

For representing DICE in Protéǵe we investigate the meta-class approach. The reasons for this choice are the fact that
it allows for the most complete specification of template knowledge and that there are additional measures possible to
solve the disadvantages. Moreover, we think that it is conceptually the cleanest approach of the three options.

Knowledge about refinable classes can be interpreted procedurally (functionally) as a “request for further spec-
ification”. Ideally, a knowledge-acquisition environment should present the allowed property values to a user, and
provide possibility to specify one or more values. In order to achieve this in Protéǵe, we will have to implement an
extension that interprets theRefinableClass specification.

4.1 Solutions to Problems

To use the meta-class approach, we will have to overcome the problems mentioned above. With respect to the reason-
ing problem, we could split the ontology into two separate OWL-files: one with the definitional knowledge only, and
one with the meta-class and the actual values for the meta-class properties for the refinable classes. The first file will
be used for reasoning tasks, the combination of the two files for other tasks. Maintaining and editing the ontology in
Prot́eǵe will be problematic in this scenario, as it is not possible to specify in an editor how ontology axioms should
be distributed over the different files (at least up to Protéǵe version 3.0). A second way to cope with the reasoning
problem is to filter out the statements that refer to the meta-class and its properties before performing a reasoning
tasks.

We plan to solve the problem of a possible inconsistency between the definitional (DL-based) knowledge and the
template (frame-based) knowledge by specifying ‘invariants’ for the ontology that always should hold. The invariants
specify a relation between different aspects of the two types of knowledge that should be maintained, preferably by
the editing environment.

4.2 Invariants

The following invariants should hold for ontologies that use the meta-class as described in Section 3.3 to specify
template knowledge.

Only refining refinableProperties Each subclass of an instance of aRefinableClass should only define property
restrictions for properties specified as value of therefinableProperty . In other words, if a subclass specifies
a filler for a property, this implies this is arefinableProperty for the superclass, hence it should be defined
as such. In our example, subclasses ofViral Hepatitis are only allowed to define property restrictions for
the propertyhas aetiology .

Adhering to valueTypes for refinings Any specified property value for a subclass of an instance of aRefinable-

Class must be a logical subset of the value of thevalueType property in the template. In our example,
subclasses ofViral Hepatitis should only use values for property restrictions onhas aetiology that are
a subset of the union of theHepatitis viruses , Epstein-Barr virus , andCytomegalo virus .

3



Inheriting valueTypes Similarly, refinable subclasses of an instance of aRefinableClass should only use fillers of
thevalueType that are a subset of the fillers of thevalueType on the same property of all of its superclasses.

Consistency between valueType and allValuesFromThe value of thevalueType property in a template should
always be a logical subset of the value of anallValuesFrom -restriction on the same property within the class.
This situation does not occur in our example, but if there would have been anallValuesFrom -restriction on
has aetiology , its value should have been a superset of the union ofHepatitis viruses , Epstein-Barr

virus andCytomegalo virus .

Template absorbtion Each subclass of an instance of aRefinableClass inherits the templates of its superclasses.
However, when a subclass specifies a property restriction for the property in therefinableProperty , there
should be no template for that property for the subclasses of that class.

For the implementation of the invariants, we investigate several options. There are two levels of implementation:
detection of the violations and enforcement of the invariants.

The OWL-plugin of Prot́eǵe allows for the implementation ofontology tests. Ontology tests are pieces of Java-
code that are executed when Protéǵe is asked to check the model. Given the fact that the complete knowledge model is
accessible from the Java-code, we expect that all violations of above invariants are detectable with this implementation.

Using PAL constraints is another option for detecting violations. Using them, we can use the existing Protéǵe-
machinery for detecting and enforcing constraints. It remains to be determined whether all invariants can be encoded
in PAL.

Finally, we think about using rules, e.g. specified in SWRL [1]. We are not aware of any automated support for
checking or enforcing SWRL rules in OWL Full ontologies. It is also unclear whether SWRL rules are expressive
enough to encode all invariants.

5 Discussion

Although in this article we discuss the use of template knowledge for encoding post-coordination rules, the issue is
more general. When constructing ontologies, people often have ideas about how to structure the ontology. Sometimes,
this knowledge is made explicit, e.g. via written guidelines, sometimes it is only in the mind of the developer. Ideally,
this ‘meta-knowledge’ is encoded in the ontology itself, because it remains important during the whole lifetime of the
ontology: changes to the ontology should not violate the structural principles. This knowledge could be encoded as
template knowledge as well.

Besides the post-coordination rules, one could think of general or domain-specific structuring guidelines that aim
at a good maintainability, e.g. the ones listed in [3]. An example of a general guideline is “the branches of the
primitive skeleton of the domain taxonomy should form trees”. Combining this meta-knowledge with an OWL-based
specification of ontologies requires mixing frame knowledge with description logic knowledge. The consistency
between both types of knowledge is not automatically guaranteed. Specific ‘invariants’ will have to be defined for
these types of knowledge.

Acknowledgements

This research was supported by the Netherlands Organisation for Scientific Research (NWO) under project number
634.000.020. Seehttp://www.i-catcher.org/ .

References

[1] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean. SWRL: A semantic web rule
language combining OWL and RuleML. W3c member submission, World Wide Web Concortium, May 21, 2004.

[2] N. F. Noy and D. L. McGuinness. Ontology development 101: A guide to creating your first ontology. Technical
Report SMI-2001-0880, Stanford Medical Informatics, Mar. 2001.

[3] A. Rector. Modularisation of domain ontlogies implemented in description logics and related formalisms including
OWL. In Knowledge Capture, pages 121–128, Sanibel Island, FL, 2003. ACM.

4


