
Keeping modular and platform-independent software

up-to-date: benefits from the Semantic Web

Olivier Dameron
Stanford Medical Informatics, Stanford University, USA

dameron@smi.stanford.edu

1 Introduction

Context We consider the problem of automating the maintenance of a platform-independent
software environment composed of one main application, several plugins and some external third-
party applications. We assume that the architecture is distributed and loosely coupled: each of
these software component can be maintained by different groups and hosted separately, and no
common release format is required.

Particularly, we consider the Protégé1 ontology editor and knowledge base manipulation frame-
work. In addition to the core system of Protégé, the community developed and provides about one
hundred plugins2. Protégé can also be used in conjunction with independent external applications
such as reasoners (e.g. Racer3) or inference engines (e.g. Jess4).

Approach We assume that (1) keeping up-to-date a local installation of Protégé can be auto-
mated, and that (2) the approach can be generalized to any similar environment.

For each software item, we have to perform the following steps: find the version of the latest
available build; compare it with the version of the installed build; if necessary, find the download
URL for the latest version, and update the installed item; and finally apply local customization.

Problem Among the previous tasks, it turns out that the most difficult one is to automatically
find the version and the URL of the latest build of the software items. In this article, we consider
the different possibilities for automatically retrieving the version number of the latest release and
the download URL of software items. We analyze the limitations of the syntactic approach for
parsing HTML pages or XML-based documents. We then show that they are limitations of the
approach itself, that uses syntactic tools for performing a semantic task. We eventually propose a
lightweight semantic-based solution allowing each provider to describe its software and that do not
require additional tools on the client side. Moreover, this solution supports semantic heterogeneity,
as every provider is free to extend the description according to their specific requirements without
compromising the general compatibility.

2 Syntactic parsing of available HTML pages

For any human user, retrieving the version and downloading the latest release of each software item
is straightforward from their respective web site. However, for a machine, the relevant information

1http://protege.stanford.edu
2http://protege.stanford.edu/download/plugins.html
3http://www.cs.concordia.ca/∼haarslev/racer/
4http://herzberg.ca.sandia.gov/jess/

1

http://protege.stanford.edu
http://protege.stanford.edu/download/plugins.html
http://www.cs.concordia.ca/$sim $haarslev/racer/
http://herzberg.ca.sandia.gov/jess/

is buried into the HTML code, with no proper delimiter , and nothing to distinguish it from the
noise.

Therefore, retrieving the relevant information requires some potentially complicated string ma-
nipulations with regular expressions based on the position of keywords. It is possible to devise some
trick based on inserting keywords in comments in the right places. Moreover, this approach lacks
robustness, for example if the developper changes the HTML code, invalidating our assumptions
on the position of the information we are looking for.

We are confronted to an inner limitation of HTML: HTML is for humans, not for (smart)
applications.

3 Syntactic parsing of XML or RDF documents

Using XML, it is possible to delimit the various bits of information, and to represent explicitly
their structure. We could then ask all the contributors of the Protégé community to provide an
XML-based description of their software.

However, there is no commonly accepted DTD nor XML Schema available. We could provide
one, or maybe reuse the Eclipse5 one, but it would still require independent applications such as
Racer to adopt our own solution. Moreover, and this is the main limitation, XML is well adapted
as long as all the participants have a shared understanding the data structure, but it does not
support extension nor automatic reasoning about this structure. As a consequence, this approach
lacks scalability. If some of the participants need to extend the common format, then the others
would not be able to exploit the additional information.

RDF and RDF Schemas would allow to specify some machine-processable basic semantics, thus
addressing the extensibility and heterogeneity issues of XML. Particularly, the DOAP project6

provides an XML vocabulary to describe (open source) software projects. DOAP descriptions are
provided for the ProtegeScript7 and the Prompt8 plugins.

The version and the download URL can be easily retrieved from a project’s DOAP description.
Moreover, a DOAP description refers to a DOAP RDF Schema9 that provides an explicit and
machine processable description of its semantics.

However, directly using DOAP has the following limitations. First, DOAP needs to be extended
for representing various distributions of a single project, which is the case for the core Protégé:
Protégé is available in a stable and in a beta versions, and the download URL also depends on the
architecture and the inclusion of a Java Virtual Machine. Second, the DOAP description is still
parsed syntactically. This is a problem with the XML syntax of RDF, as there exists several valid
representations of the same statement.

4 Semantic querying of RDF documents

We addressed the previous two limitations.
We extended the DOAP Schema for representing Protégé-specific information10 (show snapshot

of the RDFS file in Protégé). The extended DOAP file11 for Protégé is available online.
Using RDF queries over the DOAP descriptions allows the user to perform high level semantic

queries such as “find the revision of the stable branch” in a SQL-like form independent of the RDF
syntax variability.

5http://www.eclipse.org
6http://usefulinc.com/doap
7http://smi.stanford.edu/people/dameron/protegeScript/doap.rdf
8http://protege.stanford.edu/plugins/prompt/doap.rdf
9http://usefulinc.com/ns/doap#

10http://smi.stanford.edu/people/dameron/ontology/rdf/doap-od.rdf
11http://protege.stanford.edu/doap/doap.rdf

2

http://www.eclipse.org
http://usefulinc.com/doap
http://smi.stanford.edu/people/dameron/protegeScript/doap.rdf
http://protege.stanford.edu/plugins/prompt/doap.rdf
http://usefulinc.com/ns/doap
http://smi.stanford.edu/people/dameron/ontology/rdf/doap-od.rdf
http://protege.stanford.edu/doap/doap.rdf

Moreover, RDF queries transparently handle the Protégé-specific specializations, so the pre-
vious query also works with the extended DOAP description of Protégé for example. However,
requiring every client that would want to perform automatic update of its Protégé environment
to have a RDF query engine locally installed seems impractical. Therefore, we propose to use an
Ontology Web Service [1] providing a generic RDF-processing functionality12. The client only has
to implement basic web service capabilities for sending the DOAP document and a SeRQL query
to the server, and retrieving the corresponding version number and download URL.

5 Implementation of a solution

In order to demonstrate the feasibility of our approach, we implemented checkProtege13, a Python
script that automatically keeps a local installation of Protégé and of the related software up-to-date.

The checkProtege script implements the three approaches that we have examined. For some
items such as Racer or the OWL-plugin for Protégé, for which there is no DOAP description
available, it relies on syntactic parsing of HTML pages. For items having a DOAP description,
such as Protégé, the Prompt plugin and the scripting console, the client can choose to perform a
syntactic parsing of the RDF documents, or, more elegantly, to call the SeRQL engine web service.

Interestingly, this approach can be used to keep automatically checkProtege itself up-to-date
before processing the Protégé-related items. When necessary, new functionalities are added, up-
dating checkProtege automatically updates the configuration file too.

So far, checkProtege has been used successfully for four months on Windows, Apple and Linux
machines, including one server for which the script is called automatically every night. The integra-
tion of checkProtege into Protégé itself is in progress. Special attention will be paid in separating
a generic library of DOAP manipulation functions from the Protégé-specific parts.

6 Conclusion

We have presented a solution for the automatic maintenance of a composite software environment
from distributed sources. Particularly, we showed that the problem of retrieving the latest available
version number and download URL from each of the components without enforcing each of the
contributors to provide a description in a common and fixed format is a semantic one. Consequently,
we proposed a RDF-based solution and demonstrated that it could be extended by some of the
participants without impairing the general compatibility. Eventually, we assessed to feasibility by
implementing a demonstrator for the Protégé project.

References

[1] O. Dameron, N. F. Noy, H. Knublauch, and M. A. Musen. Accessing and manipulating on-
tologies using web services. In Proceeding of the Third International Semantic Web Conference
(ISWC2004), Semantic Web Services workshop, 2004.

12http://smi-protege.stanford.edu:8080/axis/services/rdfQuery
13http://smi.stanford.edu/people/dameron/script/checkProtegePython/

3

http://smi-protege.stanford.edu:8080/axis/services/rdfQuery
http://smi.stanford.edu/people/dameron/script/checkProtegePython/

	Introduction
	Syntactic parsing of available HTML pages
	Syntactic parsing of XML or RDF documents
	Semantic querying of RDF documents
	Implementation of a solution
	Conclusion

