07/18/2005

Application Development with Protégé

Samson Tu
Ray Fergerson

. Part |l - Ray
« Protégé and Databases
« Protégé Application Designs
« API Application Designs
+ Web Application Designs
. Part Il - Samson
- Higher-Level Access to Protégé Knowledge Bases
- Problem Solving Methods (PSM’s)
- Reasoning Systems (Algernon, Jess)
« Scripting Language Interfaces

Stanford Medical Informatics, Stanford CA

Page 1

©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 2

What does Protégé Do?

Answer: Nothing!
Protégé is a tool.

Allows you to create a model and collect information.
Similar to, and just a useless as, a database.

What you probably want is an application that does
something useful...

How is Protégé Different from a Database?

- Emphasis on Model vs. Data
« Protege: Model is equal or more interest as data
- Database: Data is important, model is secondary

- Emphasis on Expressiveness over Performance
Protégé: Richer modeling language
- inheritance relationships
- constraint “overriding”
. expressing “webs” of relationships

Database: Simpler modeling language, optimized for
speed

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 3

The Misleading Question

Q: What can you do with technology X that you cannot do with
related technology Y?

A: (Usually) nothing

Q: What can you do with Protégé that is impossible with a database?
A: Nothing

Q: What can you do with a database that is impossible with a file?
A: Nothing

Q: What can you do with Java that is impossible with assembly
language?
A: Nothing

Phrasing the question as “possible vs. impossible” leads nowhere.

The Real Question

When is it easier, clearer, more straightforward to use X instead of Y?

Preferable to have direct rather than simulated support for desired features.
« Simulation reduces clarity and portability
« Some simulation may be necessary, but the less the better

Protégé might be better than a database when:
« Model consists of rich data, with many relationships that are often traversed.
« Requirements and application design are changing and not clearly specified.
- Protege is a good exploratory and experimentation environment.
- Quick iterations are possible between model, data, and application changes.

Oversimplified Answer:
. Simple, flat, fixed model, speed paramount -> Database
. Complex, network-like, changing model with concept hierarchies -> Protégé

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 4

It doesn’t have to be Either/Or

Construct model in Protégé

Initial implementations with Protégé

Iterate until requirements/design is firm, initial
data is input

Generate database schema from Protégé model
and populate database with Protégé instances

Application Designs

An Application Design that Doesn’t Work

Applications Designs that Do Work
- API level Application designs
« Web Application designs

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 5

An Application Design that Doesn’t Work

Idea:

1. Create Protégé Project with database backend

2. Create the classes and instances

3. Access the database tables directly with other applications

. Database tables are designed and optimized to work with a
particular application in mind.
The Protégé database table was designed with the Protégé
application in mind
The Protégé database table was NOT designed with your
application in mind

- Instead access the data though the Protégé API.

Protege APl Applications

- Tab as application
. Standalone Application

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 6

Protégé Tab as An Application

Description

- Create a custom tab plugin

- Configure Protégé to just display your tab
« Pros

- Simple

- Great for few users

- Iteration (change of model, data, app) is very easy
- Cons

- Protégé must be installed

- Difficult to permanently disable standard functions

« Stuck with Protégé menus, toolbar, etc

« No security on underlying model and data

- User really should know something about Protégé

Standalone Application

Description
- Write standalone Java Application
- Call into the Protégé API for knowledge base access
. Often evolves from a Tab
- Pros
- No need to install Protégé
- User doesn’t need to know anything about Protégé
- Underlying model and data are as secure as you want
- Can use some or none of the Protégé Ul, as desired
- Forms for classes and instances are available
« Some tabs will work
. Cons
- Iteration somewhat more difficult than as Tab

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 7

Standalone Application Example

or code see:
http://protege.stanford.edu/conference/2005/slides

Protége Over the Net

Applets

Java WebStart

Servlets and Java Server Pages
- Protégé RMI server
« Custom server

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 8

Applets are a standard Web Browser (Internet
Explorer, Firefox) plugin for running Java
programs inside a browser.

- By default the application runs in a “sandbox”
+ No file system access

- Requires no “application” installation.
- Requires one installation of correct Java version

- Application is only available by going to a web
page — no offline capabilities

Example: Protégé Web site demos

Java WebStart

WebsStart is a standard Java mechanism for
installing and running Java programs on a client.

- Application is “automatically” installed and started
when the user hits a URL.

« Improvement on Applets:
Handles Java VM updates
Handles application updates
+ Allows off line execution
- Allows application execution without starting browser

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 9

Servlets and Java Server Pages (JSP)

Servlets are web server plugins written in Java.
Called by accessing a particular URL.
Control the design and content of the page sent to the caller’s
browser
JSP are code written in a “java-like-language” embedded in
a web page. This code can make calls to the web server
and typically control the design and/or content of part of the
page.

Typically servlets (directly) and JSP’s (indirectly) call into the
Protégé API to access knowledge base elements and use
this information to influence the design and content of web
pages.

Example: “Protege Web Browser”

Remote Method Invocation (RMI) Server

Standard Java remote procedure call mechanism.
- Used by the Protégé multi-user client.

- Provides programmatic access to Protégé API
across the web.

- No need to export project access or database
access

Example: Protégé Multiuser Client/Server system.

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 10

Wrap the Protégé API (or the part that you want
to export) with your own APl and then make it
available with whatever network protocol you like.

Example: Protégé CORBA Server

Summary (of Part I)

Protégé and Databases both have their places

. Standalone applications are easily built on Protégé
« Using only knowledge base
- Using also some/all of the Protégé Ul

- Web applications are built on top of Protégé in
variety of ways

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

Stanford Medical Informatics, Stanford CA

07/18/2005

Application Development:
Part 11

Samson Tu, Ray Fergerson
Stanford Medical Informatics
Stanford University

8t International Protégé Conference
Madrid, Spain, July 2005

With thanks to Monica Crubezy and Olivier Dameron for lending their slides

. Part | - Ray
« Protégé and Databases
« Protégé Application Designs
« API Application Designs
+ Web Application Designs
. Part Il - Samson
« Higher-Level Access to Protégé Knowledge Bases
« Problem Solving Methods (PSM’s)
- Reasoning Systems (Algernon, Jess)
. Scripting Language Interfaces

Page 1

©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 2

Recap: Application Development
Architecture

- Protégé knowledge base can be exported to database
- Protégé applications can take different forms
Stand-alone application
Tab plugin
Web-based
« Applets
- Java WebStart
- Servlets and Java Server Pages
- Protégé RMI server
+ Custom server

Application Development Technology

Java

—
Protégé
Knowledge Base

Problem-Solving
Methods

Rule-Based
Systems (JESS,

Algernon)

Scripting
Languages

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 3

Problem-Solving Methods (PSMs)

Standard, explicit algorithms that address
stereotypical (Artificial Intelligence) tasks
- Design, classification, diagnosis, planning
. Domain-independent components that
abstract the reasoning process from factual
knowledge
Reusable for different applications and domains

. Collected and indexed in libraries for reuse

Heuristic classification in MYCIN

Feature Solution
Abstraction Refinement

Compromised |s— Gram-negative
host Heuristic infection
/ Match
Immuno-
suppressed
/ Pseudo- E. coli

Alcoholic monas

WBC <25 (After Clancey)

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005

The Heuristic Classification PSM

Feature Solution
Abstraction Refinement

(feature space, (solution space,

abstractors) refiners)
—
Abstract observables Heuristic

Match

(matching rules,
coverage criterion)

Raw observables

Class of solutions

Page 4

Specific solution

Heuristic classification for food & wines

Solution
Refinement

Feature

Abstraction
(“If alcohol level > 9%
then strong flavor”)

“full body, strong flavor, _—
red color” Heuristic
Match

“Find wine with red color, full body,
alcohol content > 10%”

“Every observable as to be explained”
“full body,

alcohol content>10%,
red color”

(“Medoc is-a dry Red Bordeaux,”
“Pauillac is-a full-body, strong-flavor Medoc”)

Class of wines
“Medoc Wine”

(After KSL’s Wine Agent)

Wines to
Recommend
“Chateau Laffitte
Rotschild Pauillac”

Stanford Medical Informatics, Stanford CA

©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 5

To use PSM: Mapping domain to PSM 1/0

ontology

Problem-Solving
Method

' ‘ Method
Method Output Ontology

‘ ‘ Input Ontology ' . (solution)

‘ ' (observables,
solution space, Mapping

o0 abstractors) (solution TO wine recommendation)

Mapping o o0
(flavor, color, alcohol content o0
TO observables) o0
Domain Ontology
(flavor, color, alcohol content, wine)

Conceptual and syntactic mismatch

alcohol content Integer
alcohol strength Symbol allowed-values={LIGHT,MEDIUM,STRONG}
Class
Symbol allowed-values={FULL.MEDIUM,LIGHT}
Symbol allowed-values={RED,ROSE,WHITE}
Symbol allowed-values={DELICATE, MODERATE,STRONG}
Eoolean
Instance inverse-slot=produces
String
commendatlons Integer default=5
‘\ Ntion coverage Symbol allowed-values={POSITIVE,COMPLETE}
\‘\\.\ £ L~ Lol 11 = | ITT\M Il hl\m EL

N otion of a “Desired features of wine”

Notion of an “Input Case”

classification-type Symbol allowed-values={ADMISSIELE, OPTIMAL}
coverage-type Symbol allowed-values={POSITIVE,COMPLETE}
name String

number-of-results Integer

observable-list Instance of observable

space Instance of solution-space

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005

Page 6

Specify mappings as a Protégé knowledge
base

Problem-Solving

is itself an Mapping
instance of an
ontology of
possible

mapping types

(flavor, color, area
TO observables)

Method
() ° Method
¢ o Method Ui om0y
Input Ontology ' .
' ‘ (observables, .
solution space, Mapping Ontology
@ e abstractors) @ (solution TO wine recommendation)
o0
—>0
Each mapping o ——

® 90
Ontology o0

Domain Ontology
(flavor, color, alcohol content, wine)

Ontology-mapping approach

: Mapping
Domain
Knowledge Interpreter
[)
*0 = — —
¢ L Domain PSM input
I instances instances
o0
o0
Domain Mapping
Ontology Ontology
(instances of
mapping
relations)

PSM

o0
Input-output
Ontology

Stanford Medical Informatics, Stanford CA

©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 7

Mapping relations

Domain
“Source”

PSM 1/0
“Target”

Instance mapping Ontology

slot s1
slot s2

slot s3
slot s4

Slot mappings

-Each instance of the PSM input class is calculated from an
instance of the domain class

-The slot values of the PSM instance are computed

according to slot-mapping expressions that involve the
domain instance’s slot values

Mapping Wine recommendation query

to Input case
Instance mapping

Mapping name

wine recommendation guery_to_input-case

) On-demand? Renaming slot mapping

Slot mapping name
roe s #lele .
EAEQErCass il & number of recommended wines_to_num

input-case

— Source slot n
Alx[e]e]

number of recommendations

Target slot u

4 number-of-results

Source class

wine recommendation query

| Apply to subclasses of source class?

Condition
<LANG:Python>"*<is active>*" == "true"

Slot mappings

wine preferences_to_space
simple-properties_to_observable-list
|# number of recommended wines_to_nifmbi*
recommendation coverage_to_coverage-ty :

A eoromamanedosiog neoforoncn tn_cloccificor

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005

Slot ma

ppings

The target slot (tX)
The slot-value computation expression, possibly
involving source slots (si)

local access to (sub)instance slot values:
<sl.sll1>

Different types of slot mappings:
renaming: value(tA) = value(sl)
constant: value(tC) = constant
lexical: value(tB) = “*<s2>* / 20*<s3>*"
functional: value(tC) = function()

« recursive: value(tA) = instance (w/ auxiliary
mapping)

Recursive slot mapping

/ Class

P

Target
Ontology

= Instance mapping

(\\ slot s1 (S’) .

\\ ///

@ s'

l recursive slot mapping

on-demand

..

Instance mapping

K slot s’
N
L

T me

slot mappings

1

-

Stanford Medical Informatics, Stanford CA

©2005 Stanford University - Reproduction Prohibited

Page 8

07/18/2005

Mapping ontology

Conditional mapping
. filtering of source instances
one-to-many instance
mapping
- Propagation of mappings to
source subclasses
- Some degree of many-to-one
instance mapping
+ Many source KBs to one
target KB mapping
« TCL and Python scripting for
conditions, functional
mappings, and other code
« Hook-ups for custom code
« at the global level:
initialization & cleaning
« at the instance level:
before/after all/each mapping

¥ @ mapping
¥ © slot-mapping
@ renaming-slot-mapping
@ constant-slot-mapping
@ lexical-slot-mapping
@ functional-slot-mapping
@ recursive-slot-mapping
@ instance-mapping
@ global-mapping
b O executable-code
¥ © frame-description
@ source-class-description
@ source-slot-description
@ target-class-description
@ target-slot-description

Results of mapping interpretation

“Wine recommendation query” instance

Name Tannin Level Area il Bl B

Resulting
“Input case” instance

B

query 1 ! .

Alcohol Contel Alcohol Streng

12 [I:] Wine Preferences D

‘mebium ¥

Flavor

DELICATE [7]

Name

input-query-1

hservable-list A |T ik

4 body = MEDIUM m

Sugar # color = ROSE
DRY 4 flavor = DELICATE
sugar = DRY i
Recommendation Coverage Recommendation Preference # alcohol content = 12 v
[COMPLETE %) [opTimAL 3
Coverage-type Classification-type
Number Of Recommendations " COMPLETE ‘:] "OPTIMAL i:’
5
\ £ Mumber-of-results
1 S

Stanford Medical Informatics, Stanford CA

©2005 Stanford University - Reproduction Prohibited

Page 9

07/18/2005

Page 10

PSM execution support (Demonstration)

OO CmesAhstances "™ Doy | T Foms | A Queries | FSMEsecuton
et Pun | Mo Oriology aganat
Wil ralars 4 Mothd Oulpest
>
van s o
P -
" & Vi L
et o o[
MCOERATE - MEDEM - -
- -
oy BOSE AN
Optians
G Mg v Mo Troece Levet 1 o AGE PCETITVE for Wihibe Drvbarcied
et Crve e fun Wibite Irtanciel
— +ERAGE POSSTIVE far \Vibhite Marict
A W % 8 X | e e atie 10 met coverage for Vibits Mariol
L
RANP
vt Drdanos vihie Mool Rose wine Dessen wine receied solton ket n
ok e
e are your frd resus ke crder
1 White Infarael
2 Wde Meret
X Fiohe wing
& Dmenant wirm

TR Tolne Ve Ui Fiae wvm Todanrd wen)| VLT CFTS SERT 1O
P T s e K Bt e [2 e pedesend ol b e

o TEerebal S Vel FeCerond 100.00n B LI T

A X r

What PSMs are available?

Protégé’s PSM library
- Heuristic classification
« Propose and revise

. Task: Design sthat satisfy constraints
- Method: explicit algorithm of iterative constraint-

satisfaction problem solving

« Input: parameters, constraints, fixes

. Output: valid design
. Sample problems
- Elevator design

+ Ribosome structure given NMR data

Literature: CommonKADs library

Schreiber, G., et al. (2000). Knowledge Engineering and

Management: The CommonKADS Methodology. Cambridge, MA,
The MIT Press.

Stanford Medical Informatics, Stanford CA

©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 11

Concluding remarks on PSMs

- Benefits of the PSM approach

Clear, systematic paradigm for modeling & annotating
methods

Support for browsing, selecting, configuring & executing
methods

Framework for empirical experiments, comparison &
reuse

- Future of PSMs
Organization of large-scale libraries of distributed PSMs
Sharing of scientific data processing methods
Framework for Semantic Web Services

Application Development: Technology to
Use

Java

Problem-Solving
Methods

Rule-Based
Systems (JESS,

Algernon)

Protégé
Knowledge Base

Scripting
Languages

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 12

High-level programming tools

- Programming paradigms that have been
made interoperable with Protégeée
. JessTab, Algernon: Rule-based programming
- Prolog tab: Logic-based programming

- Protégé Script Console, JessTab, Algernon:
Scripting environment

+ Uses
« Programmatically modification of Protégé KB
- Protégé extender

. e.g., query, enforce relationships
- Application development

Java Expert System Shell (JESS)

- Developed at Sandia National Laboratory
- http://herzberg.ca.sandia.gov/jess/
- Free licensing for non-profit organizations
- Well supported, active user community
. Features
« Forward-chaining rule engine
« matches antecedent facts
- performs consequent actions
- Interpretive scripting language
- Integration with Java

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 13

Collection of facts that can be constrained by

templates
(used-car (make toyota)(price 2000)
(mileage 12000))

- Rules that performs actions based on patterns of

existing facts (forward chaining)

(defrule might-buy-car

?candidate <-(used-car (mileage ?m&:(< ?m 5000)))
=> (assert (candidate ?candidate)))

- Functions for procedural programming
(deffunction greaterThan5 (?x)(return (> ?x 5))

- Ability to call Java methods from within JESS
(call ?instance getDirectType)

Allow invocation of Protégé API calls from within JESS

JessTab extensions to Jess and Protégé

. Jess console window in Protégé
- Functions for knowledge-base operations

- Mapping between Jess and Protégé
- Protégé classes mapped to a Jess fact template
- Protégé instances mapped to Jess facts and Jess
facts mapped to instances
« Changes to mapped facts in Jess reflected in
Protégé; changes in Protégé reflected in Jess

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 14

Jess console window in Protégeé

Eommonl:oldﬁuideline Protégé 3.0 beta (file:\D:,_ShortCourse'S| = IEIIﬂ
File Ecit Project Window Help
~ =] o
@ B3 o 9 B P I x@prorégé
= Forms r A Queries rString Search r\/ Jess |
© #® Classes & Instances Classzes r M Sjots |
Jess engine |Defau|t '| | Kill |

Console rFacts rRuIel rFunctions r[}efglobals rDeﬂempIstes rDeffs::ts rSeﬂings

Jesz, the Java Expert System Shell
Copyright {C) 2001 E.J. Friedman Hill and the Sancdia Corporation
Jess Version 6.1p1 SE/2003

Jess=

“ Enter || Brealt || Clear Window

Defining classes and instantiating them

Jess> (defclass Person (is-a :THING)
(slot name (type string))

(slot age (type integer)))

TRUE

Jess> (make-instance john of Person (hame "John') (age 20))
<External-Address:Simplelnstance>

Jess> (mapclass Person)

Person

Jess> (facts)

-0 (object (is-a Person) (is-a-name "‘Person')

(OBJECT <External-Address:Simplelnstance>)

(age 20) (name '"John'™))

For a total of 1 facts.

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 15

Modifying slots

Jess> (slot-set john age 21)

Jess> (Tfacts)

-1 (object (is-a Person) (is-a-name "'Person')
(OBJECT <External-Address:Simplelnstance>)
(age 21) (name "John'™))

For a total of 1 facts.

Creating a second instance

Jess> (make-instance sue of Person (name "Sue') (age 22))
<External-Address:Simplelnstance>

Jess> (facts)

-1 (object (is-a Person) (is-a-name "Person')

(OBJECT <External-Address:Simplelnstance>)

(age 21) (name "'John'™))

-4 (object (is-a Person) (is-a-name "Person™)

(OBJECT <External-Address:Simplelnstance>)

(age 22) (name "'Sue™))

For a total of 2 facts.

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 16

Adding a Jess rule

Jess> (defrule twentyone
(object (is-a Person)
(name ?n) (age ?a&:(>= ?a 21)))

=>

(printout t "The person " ?n

" is 21 or older™ crlif))

TRUE

Jess> (run)

The person John is 21 or older

The person Sue is 21 or older

2

Jess>

JessTab as Protégée extender: Query

. JessTab implements a set of query functions
e.g., (find-all-instances iInstance-sets query)

(deffunction findApplicableGuideline(?pid)
(return
(find-all-instances ((?g Guideline))
(= Forms [& Gueries |3 (hasApplicableContext ?g ?pid))))

& Classes & In

Jesse'w‘ﬂe (deffunction hasApplicableContext (.)..

Console rFsctl rRuI¥ Functions rDefglaball rDeﬂemplaiea r[)effads rSeﬂingx |

(getBrowserTexts (findApplicableGuideline "Assissl"))
("Mock guideline for managing cold")
Jesz=

| ‘ | Breal | | Clear Wincow

JE[T

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 17

JessTab as Protégé extender: Enforcing
relationships

- Circumference of a circle = 3.14 * 2 * radius
(defrule computecircumference
?circle <-(object (is-a Circle)(radius
?r&-nil) (circumference nil))
=> (slot-set ?circle circumference (* 3.14 2
?r))))]]
(defrule unsetcircumference (object (is-a
Circle)(radius nil)(circumference
?c&~-ni 1) (OBJECT ?0bj)) => (slot-unset ?0bj
"circumference'™))

« Run rules in the background

(reset)
(run-until-halt)

Circumference of circle automatically
calculated from radius

EntegrityConstraintsExample Protégé 3.0 beta (file:\D:_ShortCourseish Y [[3}
Fle Edt Project Window Help PAL Constraints
= a ~ e
@ es W 9) B = <€pmtégé
¥ Facet Constrairts | PAL Constraints | ezPal | PAL Queries | StringSearch | o/ Jess |
@ Classes & Instances | Classes | M Siots | = Forms | # Instances | M Cueries |
INSTANCE BROWSER INSTANCE EDITOR
For Project: @ IntegrityConstr... |For Class: @ Circle For Instance: #® Integrit.. XN o X
Class Hit - PV X @ X v | cicumference radius
UL [=] [# inteartyconstraintsExample_nstance | ‘ hsﬂ_49| ‘ 30|
b O SYSTEM-CLASS =
»>
>
»> Template
» O Concept
Circle (1) ~
Superclasses o 4] % [T»
‘ STHING | Ma

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 18

JessTab as application development tool

- Knowledge base: Algorithm for managing
upper respiratory infection

<7 Adult viral Upper Respiratory Infection {commeon cold) guideline algorithm =10 ﬂ

Label

Upper Respiratory Infection (common cold) guideling algorithm

[P
Recommendation Nodes Aowow ow XSG

Context

Decision
presentation
of SAss‘ess » Hnm: Home care O
! R— ymptoms care?
Orel ntin

Referral necessary

Inguiry

(disclaimer: tutorial example, no medical content)

Jess code to execute the clinical algorithm

« In CommonColdGuideline project, load and run application

« Jess> (batch d:/_ShortCourse/projects/executionEngine.clp)
- TRUE

« Jess> (runCase Assissi)

« Jess> (runCase "Assissi")

« Processing Context presentation of symptoms
« Processing Inquiry Assess symptoms

. Do)es patient have symptoms of other illness? (answer for for case Assissi)(yes or
no) yes

. Is patient a smoker? (answer for for case Assissi)(yes or no) yes

. Does patient have asthma? (answer for for case Assissi)(yes or no) no

- Does patient have inhalant allergy? (answer for for case Assissi)(yes or no) no
« Processing Decision Home care?

« Processing OrderlIntervention Referral

+ **Recommendation**: order Referral

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 19

Algernon

- Developed by Micheal Hewitt
(mhewett@users.sourceforge.net)

- http://algernon-j.sourceforge.net/doc/algernon-
protege.html
« Under active development
- Features

« Inference engine with interleaving of forward and
backward chaining

- Operate directly on Protégé frames
- Access to multiple concurrent KBs
- Interpretive scripting languages

- Lisp

+ Unix shell commands
- Integration with Java

Algernon Protegé console window

ideline Protégé 3.0 beta ShortCourse' projects’ —al x|
ect Window Help Algernon

[ruje’ ® i ﬁpmtégé

= Forms r A Queries r String Search r o Jess r/ Algernon |
© # Classes & Instances Closses It = Siois |
ALGERNON

Enter a Path
((:ADD-CLASS (7x Concept)(:NAME 7x AlgernonConcept)))
Resulis

Index x [prevRresut |
Messages
28. TELL failed. ||
((:ADD-CLASS (7x Concept)(:NAME 7x "AlgernonConcept™)))
20. TELL succeeded
({:ADD-CLASS (7x Concept)(:NAME 7x AlgernonConcept})) |
30. TELL succeeded. B

|| ciear
Algernon 4.9.0, 10 Aug 2004, hitpalgernon.sourceforge.net/

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 20

Algernon basics

A path that is a sequence of clauses: (relation frame
value), where relation may be a slot or an Algernon macro
((date FluOrCold_Instance_0 “2005/06/12’"))

Variables that can be bound with values as a result of
processing queries or of explicit assignment

“Find labels (?z) of instances (?y) of subclasses
(?x) of Task”

((:DIRECT-SUBCLASS Task ?x)(:INSTANCE ?x ?y)(label ?y ?z))

Macros provide built-in relations and perform actions
((-ADD-CLASS (?x Concept)(:NAME ?x AlgernonConcept)))

Adding a hierarchy of classes

((:TAXONOMY (:=THING
(Plants
(FloweringPlants
(Roses)
(Begonias Moms-Begonia-1)
(Tulips Tulip-1 Tulip-2 Tulip-3)))
(Animals
(Reptiles
(Alligators)
(Turtles))))))

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005

Algerno

N rules

Supposed we have a Component class with
location, ordered, shipped, status,

and last-update slots

Class Hierarchy

f Classes r- Slots: r = Forms I/ # Instances I/A Gueries |

A
L

Hame

For Project: @ For Class: @ Coomponent (instance of :STANDARD-CLASS)

Page 21

Documentation Cons

THING Coomponert |
P © SYSTEM-CLASS
Coompanert Role
Concrete -~
Template Slots
Name [cardinatty] Type | Cther Facet:
M = [ocation single Symbol allowed-valies={ONSITE OFFSITE}
o || esteupcite single Stiing
EEpEIE = ordered single String
:THING = chipped single String
- ctatus single Symbol alowed-values={Avallable Reserved Soh
[l I [»]

Forward

. If a component is ordered, set its status as

chaining rules

Reserved’.

((ordered ?x ?date) ->
(status ?x Reserved)
(last-update ?x ?date))

Stanford Medical Informatics, Stanford CA

©2005 Stanford University - Reproduction Prohibited

07/18/2005

Backward chaining rules

- A component is onsite unless it has been

sold.

((location ?x ONSITE) <-

(-FAIL (status ?x Sold)))

Query: Is (status component-1 Sold)~?

Supposed (location component-1 ONSITE)

is true, then conclude

(status component-1 Sold) is false

Page 22

Very good Algernon Tutorial:
http://algernon-j.sourceforge.net/tutorial/

Algernon Tutorial

These shdes provide a brief tutorial to Algernon. The user should already know a
bit about rule-based reasoning and be familiar with a frame-based KBMS such as
Protégt

The tutorial shides use the Newspaper example KB that is suppled with every
release of Protégé. The MNewspaper KB was relatively unchanged until 7 Feb 2003
when it was extensively updated in Protégé release 1.8beta build 1030, These
tutorial slides currently use the version of the Mewspaper KB in uze hefore build
1030.

Class 1: Foundations

a Uses of
b. Paths, clauses and relations

c. Ground and non-ground clauses
d. Bindings, Bin. Lists and Bind
e. Success and failure of clavses

£ Syntax Summary

g Simple gqueries

b Simple assertions

i. Running Alzernon

Ernon

Sets

Class 2: Beginning Algernon

Stanford Medical Informatics, Stanford CA

©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 23

Application Development: Technology to
Use

Java

Problem-Solving
Methods

Rule-Based
Systems (JESS,

Algernon)

Protégé
Knowledge Base

Scripting
Languages

Context / Problems

Repetitive tasks
ex: creation of lateralized concepts and their
relationships
« Enumerations
ex: Ribs
- Dependencies between concepts or relationships
ex: Thorax / Skin of Thorax

Ontology maintenance
require ad hoc detection and fixing

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 24

Objective: Scripting environment for
Protége

Create macros
« repetitive and error-prone tasks
. formalism for handling intrinsic complexity
« towards more abstraction
. Code reuse

« User-friendly and powerfull
simple and intuitive syntax
well formalised

Architecture

Principle
Python interpreter in Java: Jython
Thread (share address space with Protégé)
. Shared variable: kb

« Compatibility with frames and OWL
instance of KnowledgeBase (Frames)
. instance of OWLKnowledgeBase (OWL)

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 25

[FTAwines Protége 211 (i ivier/proj Gy OwIwInes] ines.pprj, Standard Tet Fles) T=Tar]
Project Edit Window Help

g -~ BE % AR
(ED Classes [[18]]] T [
Relarionship| Superclass V‘ V C & X :@ THING (ype=3TANDARD-CLASS) (5 &
[T THINGA | Name Documentation Constraints v T o+ -
© (L) SYSTEM-CLASS A :
(S winery 5 [THING |
@ (L) Wine region A E
© (C) Cansurable thing #| Role
(C)Meal course ; |AbstracM v‘
(C)Wine grape :
2| Ternplate Slots & M C X + -
Mame [Twe | Cardinalit [Other Facets
ffi I I EEEEEEEEEEEEEEEEEEEEEESR
: L 7 7
: . 4. Protége
[aa u
i |

kb

SME Pythaon Shell (SPyConsole)
Jython 2.1 on platform javal.S.0-hetaz2

E ProtegeScrip 3. Jvthon

| 1. Python Code[———>{|2. Python Console|

Get frame's attributes
. Create frame
. Create instances

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

Stanford Medical Informatics, Stanford CA

07/18/2005

[FF=vines Protége 211 (ivier/proj ay ines/wines.ppr, Standard Text Fles)

IDIEIE

Project Edit Window Help

@ -« BFK

<L Instances

Classes V {|DisplaySiot :@ myhlewFoodinstance (type=Food)

C

MName

© (C) SYSTEM-CLASS A

[):THING A ; <
(€1 Winery (42) |

@ (B Wine region A Direct Instances ¥ C &4 X
@ (C) Cansumakle thing : kT myMewFoadinstance B
@ (EFood (1) :
@ (C)Meat
& () Fowl
@ (C)Seafood
@ (C)Pasta
(CiTomato-hased food (1)
@ (C)Dessert
© () Fruit
@ () Drink.
(T Meal course (5)
() Wine grape (15)

thon Console Tah - Protégé

HE Py thon SRell [aFyLonsole)

lython 2.1 on platform jawal.5.0-pbetaz

=r> kbogetClass()

<jclass edu.stanford.smi.protege.nodel. DetaultknowledgeBase at 24103634

2> kbogetCls(“"Food")

Cls({Food, FrameID{1:1001473)

=>> kbh.getCls("Food").getDirectSubclasses()

[C1s({Meat, FrameID{l:10055)), Cl1s(Fowl, FrameIDi{l:100803), C1s(Seafood, FrameID(1:10083)), Cls{Pasta, FrameID(1:10088)),
Cls(Tomato-based food, FrameID(1:10075373, C1s{Dessert, FramelD{l:10076)), C1s(Fruit, FraneID{1:100733)]
w22 kbogetCls("Food").gethirectInstances()

a

>>> Kh.getfls("Food"}.createldirectInstance ("myMNewFoodInstance")

SimpleInstance(myNewFoodInstance of [C1s(Food, FrameID{1:1001433]1)

e

=

Get classes' attributes
+ Create class
. Create relations

Page 26

©2005 Stanford University - Reproduction Prohibited

07/18/2005

Project Edit Wincdow OWL Coce Help

Page 27

& =1 E

LEd -« B
[P[l] Properties

[PIl| Properties @’f rﬁf @'j Ej = :EhasD\rethan (e = owl O ectProperty) +—-F T
o
@ [0 hasPart A [Mame | Equivalent Froperties | | Annotations ¥ @@ 4
hasDil &
@Es‘a;e (FEEI-ETR [hasDirectPart | Propert value [Lang
roifs:comment
[Domain defined Range [l Allows multiple values
bomain U £ e "”5‘3”59 '| [T Inverse Functional
[owl Thing .
i Classes U 0 0 &N o
H Irverse i}
H F@Aﬂa\um\cal(uncept D E‘ o
o8]

= Python Console Tah - Prof

SME Pwthon Shell (SPyCansole)

Iython 2.1 on platform javal.S.0-beta?2

=x» kKhogetClassi)

<jclass edu.stanford.smi.protegex. owl.jena. JenalkWliknowl edoeBase at 13572454 >
= kb.getMamed(ls{"Anatomical Concept")

Cls(dnatomicaltoncept, FrameID(1:10075))

e KbogetSTot("hasDirectPart")

S1ot¢hashirectPart)

Subclass Relationship © Heart {type=owl:Class)

pees
[BIEIE
Project Edit Window OWL Code Help
hDEg -~ B B B BB
[CIl) OWLClasses
+-F T

| Annotations

ki M

Propert

Value | Lang

Asserted Hierarchy (i = Name |
[owdl: Thing [Rean |

@ (£ AnatomicalCancept
(C) LeftanatomicalCancept
@ RightanatomicalConcept
(C)Heart

() side

rdfs:comment

[Asserted [(nferred |

Asserted Conditions

J e &N

[FI]] Properties [D] @E B & -4

ECESSART & SUFFICIENT
NECESSARY
|©) anatomicalConcept

@ hasPart {multiple AnatomicalConc
[O] hasside rmuniple Sice)

& B

® Logic View O Properties Yiew

1 Python Console Tab - Protégé

SME Pwthon Shell (SPyConsole)

Iython 2.1 on platform javal.S.0-heta2

= KbogetClass()

<jclass edu.stanford.smi.protegex. owl.jena. JenalWlKnowl edgeBase at 13572454
sxe KhogetNamed(ls{"&natomical Concept")

Cls{anatomicalConcept, FrameID(l:10075))

=x» kKhogetslot("hashirectPart™)

5lot¢hashirectPart)

=r» Kh.createNanedsubClass("Heart", kh.,getNamedCls("Anatomical Concept")
C1s(Heart, FrameID(1:100933)

EEes

Stanford Medical Informatics, Stanford CA

©2005 Stanford University - Reproduction Prohibited

07/18/2005

Page 28

Example of using script to maintain
knowledge base: Repetitive tasks

Creation of a lateralized anatomical concept:

Hand

- create Hand

- create subconcepts LeftHand and
RightHand

- define LeftHand = Hand on the LeftSide
- Hand: either LeftHand or RightHand
- LeftHand and RightHand are disjoint

Project Edit Window OWL Code Help

¥~ anatSimple_Protégé 2.1.1 file:ome/olivier/projetiontology/owlfanatSimple.pprj, OWL FIleS) oo oo o s s i s

DS@ -~ 2% =% AR Hel & B BEE

@ (C) LeflanatomicalConcept
(=g @ RightanatomicalConcept
@ (C)Hand

(C) LeftHand

2| rdfs:comment

(i) OwlLClasses || (e 45 [0
Subclass Relationship B4/ Hand ftype=owl:Class) +-FT1
: = =" e -
Asserted Hierarchy ¥ A e 2 [Name | | Annotations [T Eﬁ@ X =
[5) 0w Thing E Propert alue [Lang
@ (E) AnatomicalCancept B [anc |
(C)Heart

(Dside ~ left hand
- right hand
Necessary Conditions:
— anatomical concept

@ RiNecessary and Sufficient Cﬁnditiu.->.

= [(Inferred |

o Conditions

O e X

[F]]] Properties (D [dj L Gy

[@]hasPart (multiple AnatomicalConc

|Li} LeftHand L RightHand

| @ anatomicalconcem

MECESSARY & SUFFICIENT

MECESSARY

(O] hasside imultiple Side)

|]

& B

® Logic Wiew () Properties Yiew

L
I@—N Python Console Tab - Protégé

BEE |

SME PyThon Shell (SPyConsale)
Iython 2.1 on platform javal.S.0-betaz
>

Stanford Medical Informatics, Stanford CA

©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 29

Repetitive tasks

- createlLateralizedConcept(“Hand”, “Anat”):
« ¢ = createConcept(“Hand”, “AnatomicalConcept”)
« lc = createConcept(“LeftHand”, “Hand”)
. rc = createConcept(“RightHand”, “Hand")
. definec=Icorrc
« define Ic = ¢ and LeftAnatomicalConcept
- define rc = ¢ and RightAnatomicalConcept
- make Ic and rc disjoint

anatSimple Protégé 2.1.1 fi
Project Edit Window OWL Code Help

NEE -« 28 =2 AR o & el E]
(i) OwlLClasses || [2 ncividuals | @2)

Subclass Relationship B14fC Finger (type=owl:Class) +-F
=g = 3 U
Asserted Hierarchy o X A Name | | Annotations L e g
[owl:Thing H Propert alue [Lang] |
@ (C) AnatomicalCancept i [Finger |
(C)Heart
@ (C) LeftanatomicalCancept e ERSEIAER
&@R\ghtAnatnmwcalCnncem
@ (C)Hand
(C) LeftHand
(C)RightHand i
@ (E)Finger : o o
() LefiEinger | (“Asseried | Inferred. | (Bl Properties [0 [0 g1 AL & 38 |
@RNecessary and Sufficient Conditions:| ap e @ hasPart [multiple AnatamicalCanc |
(©)side ~ left finger ENEE CRCE=R. Y [0]hasside (muliple Side)
= right finge_r_ MECESSARY & SUFFICIENT
Necessary Conditions: inger U RightFinger
— anatomical concept MECESSARY
f ’@Anawmicalcancepl
|| Iy &y @ ® Logic Wiew () Properties Yiew
- I
I@—N Python Console Tab - Protégé ‘E‘@E

SME PyThon Shell (SPyConsale)

Iython 2.1 on platform javal.S.0-betaz

=xx erectilel " /homesolivier/nisc/python/anatidvanced. py")
=»» CreateLateralisedConcept{“Finger"])

Cs(Finger, FraneID({1:10093))

EEes

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005

iy fowlianat Simple.

t-+ anatSimple Protégé 2.1.1
Edit Winclow OWL Code

Project Help

OWL Files)

Page 30

DEd -« Bh

[Cli OWLClasses

® @ & [

+-F 1T

Jython 2.1 on platform javal.S5.0-betaz

== exectile(" homes/olivier/misc/python/anatidvanced. py")
»»> CreatelateralisedConcept("Finger")

Cls{Finger, FranelD{1:10083})

>

Subclass Relationship @ LeftFinger (hwpe=owl. Class)
Asserted Hierarchy @ m ": "
[C) owel: Thing
@ () AnatomicalConcept
() Heart H
@ (C) LeftAnatomicalConcept [asserted [(inferres | [P1ll Properties [0 [Of el [EL X
@ (£) RightAnatomicalConcept sserad Conditions G @ [O[hasSide (mulliple Side)
@ (5)Hand U @ € &N [O]hasPart gmultiple AnatamicalConc
(© LeftHand HECESSARY & SUFFICIENT
(ChRightHand 2 Finger _
-1 @Fmger @Lermnatnmlca\(nncep[
(i LeftFinger HECESSARY
(D) RightFinger INHERITED
(© side Necessary and Sufficient Conditions:(t [frorm LeftanatoricalConcept] (]
- finger RightFinger [from Finger]
— left anatomical concept —
Dospns U@ g5 RONM
pR\ghtFlnger ‘
|| &4 ;f e $ ® Logic Yiew [Properties view
DI
SME Pwthon Shell (SPyConsole)

Project Edit Window OWL Code Help

OWL Files)

hEed@ =« 8%

[Cl OWLClasses

Subclass Relationship @Thumh itype = owl:Class) +-F T
i £ & & o s
Asserted Hierarchy (i X A Name | | Annotations ¥ Bf@ e
@ () LeftAnatomicalConcept |Thumh Propert: Value | Lang

[@ RightanatomicalConcept
©-(C)Hand
@ () Finger

rofs:comment

(C) LeftFinger
(CIRightFinger

@ (CiThumb
(C) LeftThurb
() Right Thumk — .
P oo ssered e Feroperes (51 Gi i) B 9 3
Asserted Condit 0F (Ri [@]hasPart (multiple AnatomicalConc
O Rightinex sene Ceandtans & O@ X (O] hasside imultiple Side)

@ (O MiddieFinger

@Lef{Midd\eFmger @ LeftThumb u RightThumb

@ngthlddleFmger MECESSARY
@ (CJRingFinger \CJ Finger
@ (ChLittleFinger = INHERITED

MECESSARY & SUFFICIENT

[oa] Y

® Logic Wiew () Properties Yiew

T |

ERELTTTEL /IO U T T TE T 71T 5 L7 {y LIy ST LA T o=
x> CreatelateralisedConcept("Finger")
C1s(Finger, FrameID{1:100533)
=»» CreatelateralisedConcept(“Thumb"
C1=(Thumb, FrameIb{1:100993%
»»> CreatelateralisedConcept("Index",
C1s(Index, FrameID{1:101053)

Finger*)

"Finger")

s»> CreatelateralisedConcept({"MiddleFinger", “"Finger")
Cls(MiddleFinger, FrameID({1:10111))

=»» CcreatelateralisedConcept("RingFinger", "Finger")
Cl=(RingFinger, FrameID{1:10117))

=»> CreatelateralisedConcept{"LittleFinger", "Finger")

Cls{LittleFinger, FrameID{1:10123))

e

Stanford Medical Informatics, Stanford CA

©2005 Stanford University - Reproduction Prohibited

Stanford Medical Informatics, Stanford CA

07/18/2005

anatSimple Protéyé 2.1.1 file:homelolivieriprojet/ontology fowlianat Simple.pprj,
Project Edit Window OWL Code Help

CRignFinger | e

Leftindex

@ @Bumb @ (O LeftFinger -

) LeftThumb () Leftindex 1 1

(£ RightThumb () LeftLittleFinger = LeftMIddIeFlnger
@ () Index (C) LeftMiddleFinger

D@ -~ 28 AR M ®e B @ERE

(Cli) OWLClasses ¢ a5 a2

Subclass Relationship I0) 4| Subclass Relationship 4r & m: LS} Leftindex (type=owl:Class) +-FT

Asserted Hierarchy © X A ' Inferred Hierarchy) ;| rofsicomment | ‘ -
& (T LeftAnatomicalConcept - 'f@uwl.Thlng = “ g . . |:
O%nghtmammlta\tnntem |:§; @ (@ AnatoricalConcept . Aftel’ CIaSS |f| Cat' on: -
- (C)Hand ; % ©Finger . i
@ (CiFinger ® (B Inclgye""" - LeftThUmb

() LeftFinger tE] Leftindex

rope|

hass]

hask

() Leftindex () LeftRingFinger - Leﬁ:Rlng Finger
©h%l§\|gr;tmdex (C) LeftThurnb . .
I eFinger -
? (©) LeftMiddleFinger e (C) MidtakeFinger LEftL|ttIEF|nger
o @ g b Sl ... are LeftFinger o
&@Lmleﬂnger I; D-@Thumb = S R | I ’|_

a8

® Logic View () Properties Yiew

:
[Python Console Tah - Protégé

ERECTTTE T IOy O T T TE T 71T 5 7 fy LI T DR a2
=»» CreateLateralisedConcept{“Finger"])

C1=(Finger, FrameIl({1:100583))

> CreatelateralisedConcept ("Thumb", "Finger")
C15(Thumb, FrameID{1:10095%7)

=»» CreateLateralisedConcept(“Index", "Finger")
Cls(Index, FrameID{1:10105))

=r» CreatelateralisedConcept ("HiddleFinger", "Finger")
Cls(MiddleFinger, FrameID{1:10111))

=»> CreatelateralisedConcept{"RingFinger", "Finger")
Cls(RingFinger, FrameID(1:10117))

=»» CreatelateralisedConcept{“LittleFinger”, “Finger"}
Cs{littleFinger, FrameID(1:10123))

e

Ontology maintenance

Make specific functions on the fly
« Reuse functions
. Dynamically insert / remove java listeners

- Take advantage of all the existing Java
libraries (web services, ...)

Page 31

©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 32

Direct calls to the Protégé APl => no
limitations

- Jython => power of Python + Java

. Code reuse allow to hide the low-level
Protégé API

- ProtegeScript is usefull :-)
- higher level functions
. from extensional to intentional description

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

