
07/18/2005 Page 1

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

Application Development with Protégé

Samson Tu
Ray Fergerson

Overview

• Part I - Ray
• Protégé and Databases
• Protégé Application Designs

• API Application Designs
• Web Application Designs

• Part II - Samson
• Higher-Level Access to Protégé Knowledge Bases

• Problem Solving Methods (PSM’s)
• Reasoning Systems (Algernon, Jess)
• Scripting Language Interfaces

07/18/2005 Page 2

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

What does Protégé Do?

Answer: Nothing!

Protégé is a tool.

Allows you to create a model and collect information.
Similar to, and just a useless as, a database.

What you probably want is an application that does
something useful…

How is Protégé Different from a Database?

• Emphasis on Model vs. Data
• Protege: Model is equal or more interest as data
• Database: Data is important, model is secondary

• Emphasis on Expressiveness over Performance
• Protégé: Richer modeling language

• inheritance relationships
• constraint “overriding”
• expressing “webs” of relationships

• Database: Simpler modeling language, optimized for
speed

07/18/2005 Page 3

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

The Misleading Question

Q: What can you do with technology X that you cannot do with
related technology Y?

A: (Usually) nothing

Q: What can you do with Protégé that is impossible with a database?
A: Nothing

Q: What can you do with a database that is impossible with a file?
A: Nothing

Q: What can you do with Java that is impossible with assembly
language?

A: Nothing

Phrasing the question as “possible vs. impossible” leads nowhere.

The Real Question

When is it easier, clearer, more straightforward to use X instead of Y?

Preferable to have direct rather than simulated support for desired features.
• Simulation reduces clarity and portability
• Some simulation may be necessary, but the less the better

Protégé might be better than a database when:
• Model consists of rich data, with many relationships that are often traversed.
• Requirements and application design are changing and not clearly specified.

• Protege is a good exploratory and experimentation environment.
• Quick iterations are possible between model, data, and application changes.

Oversimplified Answer:
• Simple, flat, fixed model, speed paramount -> Database
• Complex, network-like, changing model with concept hierarchies -> Protégé

07/18/2005 Page 4

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

It doesn’t have to be Either/Or

• Construct model in Protégé
• Initial implementations with Protégé
• Iterate until requirements/design is firm, initial

data is input
• Generate database schema from Protégé model

and populate database with Protégé instances

Application Designs

• An Application Design that Doesn’t Work

• Applications Designs that Do Work
• API level Application designs
• Web Application designs

07/18/2005 Page 5

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

An Application Design that Doesn’t Work

• Idea:
1. Create Protégé Project with database backend
2. Create the classes and instances
3. Access the database tables directly with other applications

• Database tables are designed and optimized to work with a
particular application in mind.
• The Protégé database table was designed with the Protégé

application in mind
• The Protégé database table was NOT designed with your

application in mind

• Instead access the data though the Protégé API.

Protege API Applications

• Tab as application
• Standalone Application

07/18/2005 Page 6

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

Protégé Tab as An Application

• Description
• Create a custom tab plugin
• Configure Protégé to just display your tab

• Pros
• Simple
• Great for few users
• Iteration (change of model, data, app) is very easy

• Cons
• Protégé must be installed
• Difficult to permanently disable standard functions
• Stuck with Protégé menus, toolbar, etc
• No security on underlying model and data
• User really should know something about Protégé

Standalone Application

• Description
• Write standalone Java Application
• Call into the Protégé API for knowledge base access
• Often evolves from a Tab

• Pros
• No need to install Protégé
• User doesn’t need to know anything about Protégé
• Underlying model and data are as secure as you want
• Can use some or none of the Protégé UI, as desired

• Forms for classes and instances are available
• Some tabs will work

• Cons
• Iteration somewhat more difficult than as Tab

07/18/2005 Page 7

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

Standalone Application Example

For code see:
http://protege.stanford.edu/conference/2005/slides

Protégé Over the Net

• Applets
• Java WebStart
• Servlets and Java Server Pages
• Protégé RMI server
• Custom server

07/18/2005 Page 8

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

Applets

• Applets are a standard Web Browser (Internet
Explorer, Firefox) plugin for running Java
programs inside a browser.

• By default the application runs in a “sandbox”
• No file system access

• Requires no “application” installation.
• Requires one installation of correct Java version
• Application is only available by going to a web

page – no offline capabilities

Example: Protégé Web site demos

Java WebStart

• WebStart is a standard Java mechanism for
installing and running Java programs on a client.

• Application is “automatically” installed and started
when the user hits a URL.

• Improvement on Applets:
• Handles Java VM updates
• Handles application updates
• Allows off line execution
• Allows application execution without starting browser

07/18/2005 Page 9

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

Servlets and Java Server Pages (JSP)

• Servlets are web server plugins written in Java.
• Called by accessing a particular URL.
• Control the design and content of the page sent to the caller’s

browser
• JSP are code written in a “java-like-language” embedded in

a web page. This code can make calls to the web server
and typically control the design and/or content of part of the
page.

Typically servlets (directly) and JSP’s (indirectly) call into the
Protégé API to access knowledge base elements and use
this information to influence the design and content of web
pages.

Example: “Protege Web Browser”

Remote Method Invocation (RMI) Server

• Standard Java remote procedure call mechanism.
• Used by the Protégé multi-user client.
• Provides programmatic access to Protégé API

across the web.
• No need to export project access or database

access

Example: Protégé Multiuser Client/Server system.

07/18/2005 Page 10

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

Custom Server

• Wrap the Protégé API (or the part that you want
to export) with your own API and then make it
available with whatever network protocol you like.

Example: Protégé CORBA Server

Summary (of Part I)

• Protégé and Databases both have their places
• Standalone applications are easily built on Protégé

• Using only knowledge base
• Using also some/all of the Protégé UI

• Web applications are built on top of Protégé in
variety of ways

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 1

Application Development:
Part II

8th International Protégé Conference
Madrid, Spain, July 2005

Samson Tu, Ray Fergerson
Stanford Medical Informatics

Stanford University

With thanks to Monica Crubezy and Olivier Dameron for lending their slides

Overview

• Part I - Ray
• Protégé and Databases
• Protégé Application Designs

• API Application Designs
• Web Application Designs

• Part II - Samson
• Higher-Level Access to Protégé Knowledge Bases

• Problem Solving Methods (PSM’s)
• Reasoning Systems (Algernon, Jess)
• Scripting Language Interfaces

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 2

Recap: Application Development
Architecture

• Protégé knowledge base can be exported to database
• Protégé applications can take different forms

• Stand-alone application
• Tab plugin
• Web-based

• Applets
• Java WebStart
• Servlets and Java Server Pages
• Protégé RMI server
• Custom server

Application Development Technology

Protégé
Knowledge Base

Client

Java

Problem-Solving
Methods

Rule-Based
Systems (JESS,

Algernon)

Scripting
Languages

Data

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 3

Problem-Solving Methods (PSMs)

• Standard, explicit algorithms that address
stereotypical (Artificial Intelligence) tasks

• Design, classification, diagnosis, planning

• Domain-independent components that
abstract the reasoning process from factual
knowledge

• Reusable for different applications and domains

• Collected and indexed in libraries for reuse

WBC < 2.5

Leukopenia

Immuno-
suppressed

Compromised
host

Feature
Abstraction

Solution
Refinement

Gram-negative
infection

Pseudo-
monas

E. coli

Alcoholic

Heuristic
Match

(After Clancey)

Heuristic classification in MYCIN

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 4

The Heuristic Classification PSM

Raw observables

Abstract observables

Feature
Abstraction

Solution
Refinement

Class of solutions

Specific solution

Heuristic
Match

(matching rules,
coverage criterion)

(feature space,
abstractors)

(solution space,
refiners)

Heuristic classification for food & wines

“full body,
alcohol content>10%,
red color”

“full body, strong flavor,
red color”

Feature
Abstraction

Solution
Refinement

Class of wines
“Medoc Wine”

Wines to
Recommend
“Château Laffitte
Rotschild Pauillac”

Heuristic
Match

“Find wine with red color, full body,
alcohol content > 10%”

“Every observable as to be explained”

(After KSL’s Wine Agent)

(“If alcohol level > 9%
then strong flavor”)

(“Medoc is-a dry Red Bordeaux,”
“Pauillac is-a full-body, strong-flavor Medoc”)

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 5

Method
Input Ontology

(observables,
solution space,

abstractors)

To use PSM: Mapping domain to PSM I/O
ontology

Problem-Solving
Method

Domain Ontology
(flavor, color, alcohol content, wine)

Method
Output Ontology

(solution)

Mapping
(flavor, color, alcohol content

TO observables)

Mapping
(solution TO wine recommendation)

Conceptual and syntactic mismatch

Notion of a “Desired features of wine”

Notion of an “Input Case”

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 6

Method
Input Ontology

(observables,
solution space,

abstractors)

Specify mappings as a Protégé knowledge
base

Problem-Solving
Method

Domain Ontology
(flavor, color, alcohol content, wine)

Method
Output Ontology

(solution)

Mapping
Ontology

(flavor, color, area
TO observables)

Mapping Ontology
(solution TO wine recommendation)

Each mapping
is itself an
instance of an
ontology of
possible
mapping types

Ontology-mapping approach

Domain
Knowledge

PSM

Domain
Ontology

Mapping
Ontology

(instances of
mapping
relations)

Input-output
Ontology

Mapping
Interpreter

Domain
instances

PSM input
instances

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 7

Class T

Mapping relations

•Each instance of the PSM input class is calculated from an
instance of the domain class
•The slot values of the PSM instance are computed
according to slot-mapping expressions that involve the
domain instance’s slot values

Class S

slot s1
slot s2
slot s3

slot tA
slot tB

slot s4}

Instance mapping

Slot mappings
slot tC

Domain
“Source”
Ontology

PSM I/O
“Target”
Ontology

Mapping Wine recommendation query
to Input case

Instance mapping

Renaming slot mapping

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 8

Slot mappings

• The target slot (tX)
• The slot-value computation expression, possibly

involving source slots (si)
• local access to (sub)instance slot values:

<s1.s11>
• Different types of slot mappings:

• renaming: value(tA) = value(s1)
• constant: value(tC) = constant
• lexical: value(tB) = “*<s2>* / 20*<s3>*”
• functional: value(tC) = function()
• recursive: value(tA) = instance (w/ auxiliary

mapping)

Recursive slot mapping

slot s1 (S’) slot tA (T’)

Instance mapping

recursive slot mapping

slot s’1

Class TClass S

Source
Ontology

Target
Ontology

Class S’ Class T’

slot t’A
slot t’B

slot mappings

Instance mapping

on-demand

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 9

Mapping ontology

• Conditional mapping
• filtering of source instances
• one-to-many instance

mapping
• Propagation of mappings to

source subclasses
• Some degree of many-to-one

instance mapping
• Many source KBs to one

target KB mapping
• TCL and Python scripting for

conditions, functional
mappings, and other code

• Hook-ups for custom code
• at the global level:

initialization & cleaning
• at the instance level:

before/after all/each mapping

Results of mapping interpretation

“Wine recommendation query” instance Resulting
“Input case” instance

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 10

PSM execution support (Demonstration)

What PSMs are available?

• Protégé’s PSM library
• Heuristic classification
• Propose and revise

• Task: Design sthat satisfy constraints
• Method: explicit algorithm of iterative constraint-

satisfaction problem solving
• Input: parameters, constraints, fixes
• Output: valid design
• Sample problems

• Elevator design
• Ribosome structure given NMR data

• Literature: CommonKADs library

Schreiber, G., et al. (2000). Knowledge Engineering and
Management: The CommonKADS Methodology. Cambridge, MA,
The MIT Press.

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 11

Concluding remarks on PSMs

• Benefits of the PSM approach
• Clear, systematic paradigm for modeling & annotating

methods
• Support for browsing, selecting, configuring & executing

methods
• Framework for empirical experiments, comparison &

reuse

• Future of PSMs
• Organization of large-scale libraries of distributed PSMs
• Sharing of scientific data processing methods
• Framework for Semantic Web Services

Application Development: Technology to
Use

Protégé
Knowledge Base

Client

Java

Problem-Solving
Methods

Rule-Based
Systems (JESS,

Algernon)

Scripting
Languages

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 12

High-level programming tools

• Programming paradigms that have been
made interoperable with Protégé

• JessTab, Algernon: Rule-based programming
• Prolog tab: Logic-based programming
• Protégé Script Console, JessTab, Algernon:

Scripting environment

• Uses
• Programmatically modification of Protégé KB
• Protégé extender

• e.g., query, enforce relationships
• Application development

Java Expert System Shell (JESS)

• Developed at Sandia National Laboratory
• http://herzberg.ca.sandia.gov/jess/
• Free licensing for non-profit organizations
• Well supported, active user community

• Features
• Forward-chaining rule engine

• matches antecedent facts
• performs consequent actions

• Interpretive scripting language
• Integration with Java

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 13

Jess basics

• Collection of facts that can be constrained by
templates
(used-car (make toyota)(price 2000)

(mileage 12000))

• Rules that performs actions based on patterns of
existing facts (forward chaining)
(defrule might-buy-car
?candidate <-(used-car (mileage ?m&:(< ?m 5000)))
=> (assert (candidate ?candidate)))

• Functions for procedural programming
(deffunction greaterThan5 (?x)(return (> ?x 5))

• Ability to call Java methods from within JESS
(call ?instance getDirectType)

• Allow invocation of Protégé API calls from within JESS

JessTab extensions to Jess and Protégé

• Jess console window in Protégé
• Functions for knowledge-base operations
• Mapping between Jess and Protégé

• Protégé classes mapped to a Jess fact template
• Protégé instances mapped to Jess facts and Jess

facts mapped to instances
• Changes to mapped facts in Jess reflected in

Protégé; changes in Protégé reflected in Jess

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 14

Jess console window in Protégé

Defining classes and instantiating them

Jess> (defclass Person (is-a :THING)

(slot name (type string))

(slot age (type integer)))

TRUE

Jess> (make-instance john of Person (name "John") (age 20))

<External-Address:SimpleInstance>

Jess> (mapclass Person)

Person

Jess> (facts)

f-0 (object (is-a Person) (is-a-name "Person")

(OBJECT <External-Address:SimpleInstance>)

(age 20) (name "John"))

For a total of 1 facts.

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 15

Modifying slots

Jess> (slot-set john age 21)
Jess> (facts)
f-1 (object (is-a Person) (is-a-name "Person")
(OBJECT <External-Address:SimpleInstance>)
(age 21) (name "John"))
For a total of 1 facts.

Creating a second instance

Jess> (make-instance sue of Person (name "Sue") (age 22))

<External-Address:SimpleInstance>

Jess> (facts)

f-1 (object (is-a Person) (is-a-name "Person")

(OBJECT <External-Address:SimpleInstance>)

(age 21) (name "John"))

f-4 (object (is-a Person) (is-a-name "Person")

(OBJECT <External-Address:SimpleInstance>)

(age 22) (name "Sue"))

For a total of 2 facts.

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 16

Adding a Jess rule

Jess> (defrule twentyone
(object (is-a Person)
(name ?n) (age ?a&:(>= ?a 21)))

=>
(printout t "The person " ?n

" is 21 or older" crlf))
TRUE
Jess> (run)
The person John is 21 or older
The person Sue is 21 or older
2
Jess>

JessTab as Protégé extender: Query

• JessTab implements a set of query functions
e.g., (find-all-instances instance-sets query)

(deffunction findApplicableGuideline(?pid)
(return
(find-all-instances ((?g Guideline))

(hasApplicableContext ?g ?pid))))

(deffunction hasApplicableContext (…)…

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 17

JessTab as Protégé extender: Enforcing
relationships

• Circumference of a circle = 3.14 * 2 * radius
(defrule computecircumference
?circle <-(object (is-a Circle)(radius
?r&~nil)(circumference nil))
=> (slot-set ?circle circumference (* 3.14 2
?r)))
(defrule unsetcircumference (object (is-a
Circle)(radius nil)(circumference
?c&~nil)(OBJECT ?obj)) => (slot-unset ?obj
"circumference"))

• Run rules in the background
(reset)
(run-until-halt)

Circumference of circle automatically
calculated from radius

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 18

JessTab as application development tool

• Knowledge base: Algorithm for managing
upper respiratory infection

(disclaimer: tutorial example, no medical content)

Jess code to execute the clinical algorithm

• In CommonColdGuideline project, load and run application

• Jess> (batch d:/_ShortCourse/projects/executionEngine.clp)
• TRUE

• Jess> (runCase Assissi)
• Jess> (runCase "Assissi")
• Processing Context presentation of symptoms
• Processing Inquiry Assess symptoms
• Does patient have symptoms of other illness? (answer for for case Assissi)(yes or

no) yes
• Is patient a smoker? (answer for for case Assissi)(yes or no) yes
• Does patient have asthma? (answer for for case Assissi)(yes or no) no
• Does patient have inhalant allergy? (answer for for case Assissi)(yes or no) no
• Processing Decision Home care?
• Processing OrderIntervention Referral
• **Recommendation**: order Referral

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 19

Algernon

• Developed by Micheal Hewitt
(mhewett@users.sourceforge.net)

• http://algernon-j.sourceforge.net/doc/algernon-
protege.html

• Under active development
• Features

• Inference engine with interleaving of forward and
backward chaining

• Operate directly on Protégé frames
• Access to multiple concurrent KBs
• Interpretive scripting languages

• Lisp
• Unix shell commands

• Integration with Java

Algernon Protégé console window

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 20

Algernon basics

• A path that is a sequence of clauses: (relation frame
value), where relation may be a slot or an Algernon macro
((date FluOrCold_Instance_0 “2005/06/12”))

• Variables that can be bound with values as a result of
processing queries or of explicit assignment
“Find labels (?z) of instances (?y) of subclasses
(?x) of Task”
((:DIRECT-SUBCLASS Task ?x)(:INSTANCE ?x ?y)(label ?y ?z))

• Macros provide built-in relations and perform actions
((:ADD-CLASS (?x Concept)(:NAME ?x AlgernonConcept)))

Adding a hierarchy of classes

((:TAXONOMY (:THING
(Plants
(FloweringPlants

(Roses)
(Begonias Moms-Begonia-1)
(Tulips Tulip-1 Tulip-2 Tulip-3)))

(Animals
(Reptiles

(Alligators)
(Turtles))))))

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 21

Algernon rules

• Supposed we have a Component class with
location, ordered, shipped, status,
and last-update slots

Forward chaining rules

• If a component is ordered, set its status as
‘Reserved’.

((ordered ?x ?date) ->
(status ?x Reserved)
(last-update ?x ?date))

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 22

Backward chaining rules

• A component is onsite unless it has been
sold.

((location ?x ONSITE) <-
(:FAIL (status ?x Sold)))

Query: Is (status component-1 Sold)?

Supposed (location component-1 ONSITE)
is true, then conclude
(status component-1 Sold) is false

Very good Algernon Tutorial:
http://algernon-j.sourceforge.net/tutorial/

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 23

Application Development: Technology to
Use

Protégé
Knowledge Base

Client

Java

Problem-Solving
Methods

Rule-Based
Systems (JESS,

Algernon)

Scripting
Languages

Context / Problems

• Repetitive tasks
ex: creation of lateralized concepts and their

relationships
• Enumerations

ex: Ribs
• Dependencies between concepts or relationships

ex: Thorax / Skin of Thorax
• Ontology maintenance

require ad hoc detection and fixing

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 24

Objective: Scripting environment for
Protégé

• Create macros
• repetitive and error-prone tasks
• formalism for handling intrinsic complexity
• towards more abstraction

• Code reuse
• User-friendly and powerfull

• simple and intuitive syntax
• well formalised

Architecture

• Principle
• Python interpreter in Java: Jython
• Thread (share address space with Protégé)

• Shared variable: kb
• Compatibility with frames and OWL

• instance of KnowledgeBase (Frames)
• instance of OWLKnowledgeBase (OWL)

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 25

Architecture

1. Python Code 2. Python Console

3. Jython

4. Protégé

kb
ProtegeScript

Frames

• Get frame's attributes
• Create frame
• Create instances

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 26

Frames

OWL

• Get classes' attributes
• Create class
• Create relations

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 27

OWL

OWL

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 28

Example of using script to maintain
knowledge base: Repetitive tasks

• Creation of a lateralized anatomical concept:
Hand

• - create Hand
• - create subconcepts LeftHand and

RightHand
• - define LeftHand = Hand on the LeftSide
• - Hand: either LeftHand or RightHand
• - LeftHand and RightHand are disjoint

Repetitive tasks

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 29

Repetitive tasks

• createLateralizedConcept(“Hand”, “Anat”):
• c = createConcept(“Hand”, “AnatomicalConcept”)
• lc = createConcept(“LeftHand”, “Hand”)
• rc = createConcept(“RightHand”, “Hand”)
• define c = lc or rc
• define lc = c and LeftAnatomicalConcept
• define rc = c and RightAnatomicalConcept
• make lc and rc disjoint

Repetitive tasks

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 30

Repetitive tasks

Repetitive tasks

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 31

Repetitive tasks

After classification:
- LeftThumb
- LeftIndex
- LeftMiddleFinger
- LeftRingFinger
- LeftLittleFinger

... are LeftFinger

Ontology maintenance

• Make specific functions on the fly
• Reuse functions
• Dynamically insert / remove java listeners
• Take advantage of all the existing Java

libraries (web services, ...)

Stanford Medical Informatics, Stanford CA ©2005 Stanford University - Reproduction Prohibited

07/18/2005 Page 32

Conclusion

• Direct calls to the Protégé API => no
limitations

• Jython => power of Python + Java
• Code reuse allow to hide the low-level

Protégé API

• ProtegeScript is usefull :-)
• higher level functions
• from extensional to intentional description

