

A Heuristic Approach to Explain the Inconsistency in OWL Ontologies Hai Wang, Matthew Horridge, Alan Rector, Nick Drummond, Julian Seidenberg

Introduction

OWL IS COMING!!

Debugging OWL is very difficult even for experts.

Inferences can be indirect and non-local.

- Multiple expressions for the same notion.
- Inconsistence propagates.
- The internal representation is very different from User's Ontology for modern tableaux reasoners.
- The more powerful the reasoner, the more likely it is to make non-obvious inferences

► A Heuristic Approach to debugging OWL (DL)

What is OWL?

- The latest standard in ontology languages.
- ► W3C recommendation.

The Univ of Manc

- Based on RDF and DAML+OIL
- Has formal mathematical foundations in Description Logics.

It allows us to use a reasoner to check the ontology.

Three Components of an OWL Ontology: Classes, Properties and Individuals.

OWL Classes

OWL is an ontology language that is primarily designed to describe and define classes. Classes are therefore the basic building blocks of an OWL ontology.

protégé

- Six main ways of describing classes
 - The simplest of these is a **Named Class**. The other
 - types are: Intersection classes, Union classes, Complement classes, Restrictions, Enumerated classes.

/ALSI

OWL Classes examples

Restrictions

► For example:

- Existential Restrictions
 - An existential restriction describes the class of individuals that have at least one kind of relationship along a specified property to an individual that is a member of a specified class.
 - restriction(hasFatContent someValuesFrom FatContent)
- ► Universal Restrictions
 - A Universal restriction describes the class of individuals that for a given property, all the individuals must be members of a specified class.
 - restriction(hasTopping allValuesFrom Vegetable)

Object properties link individuals to individuals.

Datatype properties link individuals to datatype

(AKSI)

Properties can have as specified domain and range.

values (e.g. integers, floats, strings).

OpenGALE

Properties can have certain characteristics, i.e., Functional, Inverse functional, Symmetric, Transitive.

OWL Web Ontology Language Reference

http://www.w3.org/TR/owl-ref/

Unsatisfiable OWL Classes

An OWL class is deemed to be Unsatisfiable if, because of its description, it cannot possibly have any instances.

DisjointClasses(Meat,Vegetable)

Vegetable)

Class(MeatyVegetable partial Meat,

A Heuristic Approach to Ontology Debugging

- The heuristics are based on courses about OWL that are presented at The University of Manchester.
 - ► The common made mistakes have been identified.
 - ► The DL-reasoner has been treated as a "black box".

The Unive of Manch

It is a uncompleted solution, but can handle the majority cases.

🔷 protégé

The Debugging Process

8/17/2005

9

The Determination of the Unsatisfiable Core

Three kinds of axioms define an OWL named class -- the basic debugging necessary conditions (BDNC)

- Subclass axioms (rdfs:subClassOf)
- Equivalent class axioms (owl:equivalentClass)
- Disjoint axioms (owl:disjointWith)

Epistemics Lt

- The unsatisfiable core is the smallest unsatisfiable subset of BDNC.
 - 1. UC(C)⊆BDNC(C)
 - 2. Intersection of UC(C) is unsatisfiable.
 - 3. For every set of class descriptions CD:
 - $CD \subset UC(C) \Rightarrow$ Intersection of CD is satisfiable $\lor CD=\emptyset$

The Generation of the Debugging Super Conditions

- The unsatisfiable core merely identify the local axioms resulting in the inconsistency.
- Actual cuase of the inconsistency may be defined somewhere else.

DisjointClasses(PizzaTopping, PizzaBase)

Class(**DeepPanBase** partial PizzaBase

ObjectProperty(hasFatContent domain(PizzaTopping))

restriction(hasFatContent someValuesFrom FatContent)

AKI

🔿 protégé

11....))

The Generation of the Debugging Super Conditions

- The debugging process 'collects' distributed axioms.
- Maps them into local axioms i.e. sets of necessary conditions.

The ultimate set of 'local' conditions is referred to as the *debugging super conditions*.

protégé

- Domain Rule
 - ► IF \exists S.C₁ \in DSC(C) or
 - $\geqslant n \ S \in DSC(C)$ or
 - = n S \in DSC(C),
 - where n>1, and DOM(S)= C_2
 - **THEN** $C_2 \in DSC(C)$

Epistemics Lti

protégé

For the DeepPanBase example, the class
 PizzaTopping is added to set of debugging super condition.

Debugging Super Conditions Generating Rules (Details in paper)

The Univ of Manc

oHealth i

14

(1) if $C_1 \in DSC(C) \land C_1 \sqsubseteq C_2$, where C_1 is a named OWL class
then $C_2 \in DSC(C)$
(2) if C ₁ ∈ DSC(C) and Disj(C ₁ , C ₂), where C ₁ and C ₂ are named OWL clover them = C ⊂ DSC(C)
Complement classes then $\neg c_2 \in DSC(C)$
(1) if $-C = C DSC(C)$ where C is a named OWT class
(1) If $\neg C_1 \in DSC(C)$, where C_1 is a number OWE class
if $C = C$ then $-C \in DSC(C)$
(2) if $-C = DSC(C)$ where C is an anomalous OWI class
then NOPM(C) = DSC(C)
Domain/Panea rula:
(1) if $\exists S C \in DSC(C) \setminus C = S \in DSC(C) \setminus C = S \in DSC(C)$
(1) If $DO(1 \in DO(0)) \neq n \in EDO(0)$, $v = n \in EDO(0)$, where $n > 0$ and $DOM(S) = C$.
then $C_{-} \in DSC(C)$
(0) if $\exists S C \in DSC(C) \lor \geq nS \in DSC(C) \lor = nS \in DSC(C)$
and where $n > 0$ $INV(S) = S$, and $BAN(S_{1}) = C_{2}$
than $C_r \in DSC(C)$
(3) if $\exists S_{C_{1}} \in DSC(C) \lor \geq nS \in DSC(C) \lor = nS \in DSC(C)$
where $n > 0$ and $BAN(S) = C_0$
then $\forall S.C_2 \in DSC(C)$
Functional / Inverse functional property
(1) if $\exists S.C_1 \in DSC(C)$ or $> nS \in DSC(C)$ or $= nS \in DSC(C)$.
where $n > 0$ and S is functional
then $\leq 1 S \in DSC(C)$
(2) if $\exists S.C_1 \in DSC(C)$ or $> n S \in DSC(C)$ or $= n S \in DSC(C)$,
where $n > 0$
and $INV(S) = S_1, S_1$ is inverse functional
then $\leq 1 S \in DSC(C)$
Inverse Rule
if $\exists S.C_1 \in DSC(C)$ and $INV(S) = S_1$,
and $C_2 \supseteq C_1$ and $C_2 \sqsubseteq \forall S_1 C_3$
then $C_3 \in DSC(C)$
Symmetric Rule
if $\exists S.C_1 \in DSC(C)$ and S is a symmetric property,
and $C_2 \supseteq C_1$ and $C_2 \sqsubseteq \forall SC_3$
then $C_3 \in DSC(C)$
Transitive Rule
if $\forall S.C_1 \in DSC(C)$ and S is a transitive property,
then $\forall S \ \forall S.C_1 \in DSC(C)$
Intersection Rule
if $C \wedge C_1 \in DSC(C)$,
then $C \in DSC(C)$ and $C_1 \in DSC(C)$
Subproperty Rule
(1) If $\forall S.C_1 \in DSC(C)$ and $S_1 \subseteq S$, then $\forall S_1.C_1 \in DSC(C)$
(2) If $\leq nS \in DSC(C)$ and $S_1 \subseteq S$, then $\leq nS_1 \cdot C \in DSC(C)$
(5) If $\exists S, C_1 \in DSC(C)$ and $S_1 \supseteq S$, then $\exists S_1, C_1 \in DSC(C)$
(4) If $\geq nS \in DSC(C)$ and $S_1 \supseteq S$, then $\geq nS \in DSC(C)$
Other interence Kule
If C_1 can be interred by any subset of $UC(C)$, where C is a named class
$c_1 \in DSO(O)$

Named class rule

Determine The Most General Conflict

The Univ of Mancl

AKT

EPISTEMICS LTD

- MGC(C)⊆DSC(C)
 - Intersection of MGC(C) is unsatisfiable
- 3. $\forall C_1, C_2$: MGC(C), such that $C_1 \sqsubset C_2 \Rightarrow C_1 = C_2$
- 4. $\exists C_1 : DSC(C) MGC(C)$, such that $\exists C_2 : MGC(C)$ such that $C_2 \sqsubset C_1$ and Intersection of MGC(C) \cup {C₁} - {C₂} is unsatisfiable.

OpenGALE.

Most General Conflict Analysis

Most inconsistencies can be boiled down into a small number of 'error patterns'.

Determine which of the above cases led to an inconsistency,

Use provenance information to trace where the problem come from.

protégé

► The inconsistence is from some local definition:

1. Having both a class and its complement class as super conditions.

E.g.: MeatyVegetable
□ Vegetable,

The University of Manch

The inconsistence is from some local definition:

- 1. Having both a class and its complement class as super conditions.
- 2. Having both universal and existential restrictions that act along the same property, whilst the filler classes are disjoint.

VegetarianPizza
□ ∃ hasTopping Meat,

Vegetable ⊓ Meat =∅

The Univ of Manch

► The inconsistence is from some local definition:

- 1. Having both a class and its complement class as super conditions.
- 2. Having both universal and existential restrictions that act along the same property, whilst the filler classes are disjoint.
- 3. Having a super condition that is asserted to be disjoint with *owl:Thing*.

E.g.: MyPizza
_ - owl:Thing

P

The University of Manch

► The inconsistence is from some local definition:

- 1. Having both a class and its complement class as super conditions.
- 2. Having both universal and existential restrictions that act along the same property, whilst the filler classes are disjoint.
- 3. Having a super condition that is asserted to be disjoint with owl: Thing.
- 4. Having a super condition that is an existential restriction that has a filler which is disjoint with the range of the restricted property.
 - E.g.: IceCreamPizza
 □ ∃ hasTopping IceCream,

Ran(hasTopping) = PizzaTopping, Food \Box IceCream = \varnothing

protégé

AKTI

คู่ คู่

The Unive of Manch

► The inconsistence is from some local definition:

- 1. Having both a class and its complement class as super conditions.
- 2. Having both universal and existential restrictions that act along the same property, whilst the filler classes are disjoint.
- 3. Having a super condition that is asserted to be disjoint with owl: Thing.
- 4. Having a super condition that is an existential restriction that has a filler which is disjoint with the range of the restricted property.
- 5. Having an universal restriction with *owl:Nothing* as the filler and a *must existing restriction* along property relationships.
 - E.g.: Bread ∟ ∀ hasTopping owl:Nothing,

Bread
□ ∃ hasTopping Meat

คู่ คู่

The Unive of Manch

21

► The inconsistence is from some local definition:

- 1. Having both a class and its complement class as super conditions.
- 2. Having both universal and existential restrictions that act along the same property, and the filler classes are disjoint.
- 3. Having been asserted to be disjoint with owl: Thing.
- 4. Having an existential restriction that has a filler which is disjoint with the range of the restricted property.
- 5. Having an universal restriction with *owl:Nothing* as the filler and a *must existing restriction* (existential/MinCard/Card) along property relationships.
- 6. Having *n* existential restrictions that act along a given property with disjoint fillers, whilst there is a `less then *n* restriction' along the property.

E.g.: BoringPizza $_$ < hasTopping 2,

BoringPizza \square \exists hasTopping Meat,

BoringPizza
□ ∃ hasTopping Vegetable,

Meat ⊓ Vegetable=Ø

คู่ คู่

The Unive of Manch

22

► The inconsistence is from some local definition:

- 1. Having both a class and its complement class as super conditions.
- 2. Having both universal and existential restrictions that act along the same property, whilst the filler classes are disjoint.
- 3. Having a super condition that is asserted to be disjoint with owl: Thing.
- 4. Having a super condition that is an existential restriction that has a filler which is disjoint with the range of the restricted property.
- 5. Having an universal restriction with *owl:Nothing* as the filler and a *must existing restriction* along property relationships.
- 6. Having super conditions of *n* existential restrictions that act along a given property with disjoint fillers, whilst there is a `less then *n* restriction' along the property.
- 7. Having super conditions containing conflicting cardinality restrictions.

The Universi of Manchest

The inconsistence is propagated from other source:

- Having a super condition that is an existential restriction that has an inconsistent filler.
 - E.g.: MeatyVegetablePizza
 a dia hasTopping MeatyVegetable

The Univ of Manch

Error patterns (2)

The inconsistence is propagated from other source:

- Having a super condition that is an existential restriction that has an inconsistent filler.
- 2. Having a super condition that is a hasValue restriction that has an individual that is asserted to be a member of an inconsistent class.
- E.g.: MeatyVegetablePizza
 hasValue hasTopping aMeatyVegetable

 $aMeatyVegetable \in MeatyVegetable$

The Univ of Manch

Conclusions

► A heuristic approach to ontology debugging.

Using DL Reasoner, treating the reasoner as a 'black box'.

The Univ of Manch

protégé

