
Common Features of Killer Apps:
A Comparison with Protégé

Harith Alani, Kieron O’Hara, and Nigel Shadbolt

The 8th Int. Protégé Conference, Madrid, 2005

Killer Apps!

• What are they?
– Highly transformative technologies that create new markets and

wide spread patterns of behaviour

• The term “Killer App” was first used in the mid-1980s to
describe Lotus 1-2-3, once demand for it become the
major driver for buying IBM PCs

Semantic Web Killer App?

• A very common question:
– Where is the Killer App for the SW?

• Many suggestions have be made:

The semantic web IS the killer app!

FOAF is your SW KApp

No it’s the integration idiot!

What about Adobe that supports RDF?!

Winners of Semantic Web Challenge must be KApps right?

Integration, integration, integration

I think SW Services are the SW KApps!

foafCORP
is neat!

Nooo! It’s Haystack

It’s all about the connections stupid!

Understanding Killer Apps!
• Killer apps don’t need advertising!

• Not any application can qualify as a killer!

• Applications must fulfil some requirements or possess
some features to have the chance of becoming a Killer
App

• Understanding those requirements and features might
help building more successful applications

• A peek in the worlds of business and economy might
help finding out what those features are

Features of Killer Apps

• Most of the features we found are pretty
obvious! But it’s surprising how most
applications ignore them!

• Protégé is used as an example of a successful
application

• We compare between some of the general
features of KillerApps, and those of Protégé

• Protégé is not a KillerApp for the Semantic Web,
but it’s certainly a KillerApp for ontology editing

Superiority
• Must provide higher service quality (eg email vs snail mail,

broadband vs dial-up)
– What will your semantic web application give me that I can not get

elsewhere?
– How is this better?

• Must show clear advantage over competitor products
– Can I get the same functionality using other, cheaper, technology?
– Can you demonstrate how difficult, if not impossible, it is to build this

service using more traditional technologies?
– Is the cost of migrating to this technology well justified?

• Protégé
– Competitors include OntoEdit, Ontolingua, WebOnto, OilEd, KAON, etc
– Comparison reported in Ontological Engineering, Springer 2004,

showed many superior features of Protégé

Cost vs Benefit
• Cost-benefit analysis is essential

– Cost of construction, conversion, maintenance, etc.

• KApps tend to be cheaper than alternative products. The more affordable it
is, the more users it will attract

– How costly it is to use this technology in the short and longer term?

• Many examples of free KApps; eg web browsers, search engines, chat
software. They rely on their large user communities to generate value (eg
from online ads, subscriptions to advanced services)

– How can you generate value from your service/application?

• Protégé
– Absolutely free!
– For users, it helps to bring down costs of ontology editing and maintenance
– For developers, apparently not much income has been generated

Community of Practice
• Metcalfe’s law: utility of a network equals approximately the square

number of its users
– Explains value of networked applications such as telephone, email, chat

software
– Core to the SW

• Must have potential to create a community of users
– How can our application encourage community building?
– How do you support, interact with, and listen to your users?

• Protégé
– Over 27k registered users so far
– Well attended conferences and busy mailing lists
– Very good technical support for its user community
– Users can build and share plugins

Open System
• A system draws additional value from other systems

when its open to direct interaction with them
– Reduces cost of data conversion and technology transfer
– Propose supporting technology, rather than alternatives!

• Openness is at the heart of the SW
– Will your application help to bring more RDF to the SW?

• Protégé
– One of Protégé’s main advantages is its extendibility
– Open source
– Great value is added to Protégé from external, free, contributions

(plugins)

Ease of Use
• Easy to use, non complex apps gets used more than

others
– No steep learning curves (imagine if you cant use the Web

before learning HTML!)
– Don’t expect users to know RDF or anything about ontologies

• Protégé
– Ease of use is one of the main focuses of Protégé
– Graphical interface
– Not much knowledge of RDF or OWL syntax is required
– Important to facilitate OWL editing even further (eg ezOWL)

Personalisation

• Users are more royal to customisable services
– But it has to be done properly!
– Many of today’s killer apps have some level of

personalisation (eg Amazon, AutoTrader, rightmove,
eBay, pogo)

• Protégé
– Customisable data entry forms
– Some personalised settings are stored
– What more can be offered?

Protégé: Further Issues

Scalability
• We are starting to see systems with small ontologies, but

with a large number of instances
– Eg CSAktiveSpace, winner of 2003 SWC, around 80 concepts,

25M triples
– Flink, 2004 SWC winner, FOAF-like ontology, 35M triples

• Protégé
– Main design goals were interoperability and ease of use
– Some triple-stores are designed for scale; eg 3tore, Sesame,

and Kowari
– We often see users building their ontologies in Protégé, then

migrating them to another triple store for deployment
– Could we have the best of both worlds in one system? Or get a

better integration of Protégé with such stores?

Language Support

• Support for Semantic Web languages, such as RDF and
OWL is crucial

• Protégé
– Has always been amongst the first to provide support for such

languages
– Some Protégé-specific RDF syntax has been added for more

detailed representations
– As for OWL, some parsing incompatibilities can be spotted

against Jena and SWOOP

Publishing and Access

• Online access to knowledge is essential for the
Semantic Web

• Sesame, 3Store, and many other triple stores
are designed for online querying and access
using latest SW query languages such as RDQL
and SPARQL

• Protégé
– No direct support to these querying languages
– No easy method for online access to knowledge base

… that I know of!

Semantic Web Challenge

• Currently mainly
focussing on the
use of core SW
characteristics

• Future calls
might wish to
include some of
the KApp
features
discussed here

In Summary

• It’s difficult to predict where new killers will come
from

• However, the history of killer apps makes it likely
that any SW killers will have to provide:
– a service that is not possible or practical under more

traditional technologies
– some clear benefit to developers, data providers, and

end users with minimum extra costs
– an application that becomes indispensable to a user-

base much wider than the SW researchers
community

El Fin!

Leave you with some funding
ideas ….

advertising with Protégé ….

user. Then: you should date Susan!

Match Found:
You know Stuart who knows Linda who
works with Susan who is a Protégé

Stuff about people!

bring back the Nerd!

and create the Nerd’s Mini Mall ….

Or a mini mall for ontologies ….

	Common Features of Killer Apps:
	Killer Apps!
	Semantic Web Killer App?
	Understanding Killer Apps!
	Features of Killer Apps
	Superiority
	Cost vs Benefit
	Community of Practice
	Open System
	Ease of Use
	Personalisation
	Protégé: Further Issues
	Scalability
	Language Support
	
	Publishing and Access
	Semantic Web Challenge
	In Summary
	El Fin!
	
	
	
	
	
	
	
	
	

