
Keeping modular and platform-
independent software up-to-date: 
benefits from the Semantic Web

Olivier Dameron

SMI - Stanford University

8th International Protégé Conference – July 18-21, 2005



Problem

Keeping local installation of Protégé and 
related software up-to-date

Protégé (1/week)

Plugins (1/day)

RacerPro, Jess

Potential roll-back to a previous version

... is a tedious task, even for one single 
machine !



Layout

Requirement analysis
comparison of several approaches

a RDF-based approach is necessary

existing format (DOAP) needs to be extended

Solution proposed
general principles 

adaptation to Protégé



Requirements

Automatic
retrieval of available version (is there a new one?)

download and install if necessary

Efficient (avoid unnecessary network traffic)

Installation should be clean and customizable
destination directory

roll-back (at least manually)

local config (DB drivers, link to local ontologies...)

Platform-independent (like Protégé)

Extensible



Principle
(Methods)

For each software item (Protégé, plugin, 
reasoner...):

Find the current available version

Compare with local version

If necessary, update (without messing 
the previous versions)

Apply local customization



Principle
(Methods)

For each software item (Protégé, plugin, 
Racer...):

Find the current available version

Compare with local version

If necessary, update (without messing 
the previous version)

Apply local customization

Difficult!



Finding the latest version number:
the dirty way



Finding the latest version number:
the dirty way



Finding the latest version number:
the dirty way



Finding the latest version number:
the dirty way

Parse the HTML code of the page
gory grep and regexp manipulations

requires to find a keyword 

HTML is for humans, not for (smart) applications!

what if the item developer changes the HTML 
code ?



Finding the latest version number:
the dirty way

Parse the HTML code of the page
gory grep and regexp manipulations

requires to find a keyword on the same line

HTML is for humans, not for (smart) applications!

what if the item developer changes the HTML 
code ?

This is just the wrong approach



Finding the latest version number:
the dirty way

Parse the HTML code of the page
gory grep and regexp manipulations

requires to find a keyword on the same line

HTML is for humans, not for (smart) applications!

what if the item developer changes the HTML 
code ?

This is just the wrong approach

Unfortunately, this was the case for most items: 
Protégé, OWL-plugin, Racer,...



Finding the latest version number:
a somewhat better way

Use XML descriptions
no DTD or schema available

XML is OK for a shared understanding of a data 
structure

Use RDF description
the DOAP project [http:/ /usefulinc.com/doap]

using RDF allows to specify the semantics of the 
project description



Finding the latest version number:
a somewhat better way



Finding the latest version number:
a somewhat better way

(+) Version and Download URL can be 
retrieved from the project's DOAP description

(+) The DOAP description can be automatically 
generated

(+) A DOAP description refers to DOAP RDFS

(-) DOAP needs to be extended for 
representing various distributions of a single 
project (architecture, flavor, JVM,...)

(-) The DOAP description is parsed 
syntactically :-(



<rdf:Description rdf:about=”checkProtege">
  <rdf:type rdf:resource=”doap:Project” />
  <doap:download-page rdf:resource=”http...” />

<doap:Project rdf:about=”checkProtege”>
  <doap:download-page rdf:resource=”http...” />

<doap:Project rdf:about=”checkProtege”
  doap:download-page=”http:/ /smi...”/>

are all valid RDF descriptions representing the same thing

Why syntactic (i.e. Xpath-like) 
parsing of DOAP is bad: 



Finding the latest version number:
the Semantic Web way

RDF query of the DOAP descriptions
abstract from multiple RDF syntax

allow developers to leverage RDFS expressivity 
specialize classes and relations

add new relations (e.g. for multiple download URL of 
Protégé)

Implementation choice: Sesame SeRQL (could 
be SPARQL as well...)





Retrieve the version number of the 
stable release of Prompt

RDF query (SeRQL):

SELECT revision 
FROM 

{Version} doap:revision {revision},
{Version} doap:branch {Branch} 

WHERE Branch like "stable" 
USING NAMESPACE 

doap = <http:/ /usefulinc.com/ns/doap#>



Processing RDF queries

So far, we have been using standard libraries

Requiring every client to install a RDF query 
engine doesn't look like a sensible expectation

Need for remote and shared ontology-
manipulation capabilities...

... accessible to client, regardless of their 
implementation details (os, ...) 



Processing RDF queries: OWS

Need for shared ontology-manipulation 
capabilities...

... accessible to client, regardless of their 
implementation details (os, ...) 

That's what Ontology Web Services are for!
[dameron et al. ISWC'04]

Generic ontology manipulation functions

implemented as Web Services



Processing RDF queries: OWS

Wrapped Sesame SeRQL engine in a 
Web Service:
[http:/ /smi-protege.stanford.edu:8080/axis/services/rdfQuery]

Parameters: RDF document + SeRQL query

Bonus: WSDL description comes for free

Extra bonus: we even have an OWL-S 
description for it (although nobody uses it)

Clients only need standard WS library
Python: SOAPpy

Java: Axis



Enhancing DOAP for Protégé

Reused DOAP's RDF Schema
[http:/ /usefulinc.com/ns/doap#]

Specialized relationships
[http:/ /smi.stanford.edu/people/dameron/ontology/rdf/doap-od.rdf]

Multiple releases (stable vs beta) having each:
a version number

a build number

A single release can have multiple packages, 
having each:

a specific download URL

architecture constraints (OS, flavor, JVM,...)



Enhancing DOAP for Protégé

Version and
build number

Download URL and
features of each of
the packages of a
particular release



Enhancing DOAP for Protégé

Thanks to RDF(S), the enhanced DOAP 
description of Protégé is still a valid DOAP file

Therefore:
the previous query is still valid

we only have to devise a more specific RDF query 
to retrieve the additional information



Implementation

Python script: checkProtege.py
fully automated

requires Python

Protégé plugin : Automatic Update manager
interactive (need to click :-)



Implementation principle

Protégé

 doap.rdf 

Plugins

PluginX

 foo.jar 

 bar.jar 

PluginY

 doap.rdf 

http:/ /protege.stanford...

 doap.rdf 

 install_protege.bin 

Server pluginX

 doap.rdf 

 pluginX-1.2.zip 

1



Implementation principle

Protégé

 doap.rdf 

Plugins

PluginX

 foo.jar 

 bar.jar 

PluginY

 doap.rdf 

http:/ /protege.stanford...

 doap.rdf 

 install_protege.bin 

Server pluginX

 doap.rdf 

 pluginX-1.2.zip 

1

2



Implementation principle

Protégé

 doap.rdf 

Plugins

PluginX

 foo.jar 

 bar.jar 

PluginY

 doap.rdf 

http:/ /protege.stanford...

 doap.rdf 

 install_protege.bin 

Server pluginX

 doap.rdf 

 pluginX-1.2.zip 

1

2

3
comparison



Implementation principle

Protégé

 doap.rdf 

Plugins

PluginX

 foo.jar 

 bar.jar 

PluginY

 doap.rdf 

http:/ /protege.stanford...

 doap.rdf 

 install_protege.bin 

Server pluginX

 doap.rdf 

 pluginX-1.2.zip 

1

2

3

4

comparison



Implementation principle

Protégé

 doap.rdf 

Plugins

PluginX

 foo.jar 

 bar.jar 

PluginY

 doap.rdf 

http:/ /protege.stanford...

 doap.rdf 

 install_protege.bin 

Server pluginX

 doap.rdf 

 pluginX-1.2.zip 

1

2

3

download + process
4 5

comparison



Implementation



Implementation



Automatic self updates

The previous principle can be applied to 
checkProtege itself !

When executed, it checks if a newer version of 
itself is available

If so, update itself 

Procede with Protégé et al.



Support (so far)

Protégé

Plugins:
Prompt

Script console

OWL-S ?

Automatic update plugin

<your plugin here>



Conclusion

A plugin for keeping up-to-date a platform-
independent and highly customizable software

It also takes care of himself

It Relies on semantic information provided as 
RDF(S) -> extensibility

Process this information using external generic 
ontology-manipulation functions implemented 
as Web Services (OWS)



Discussion

Other classic software update programs 
(apt-get, rpm, emerge):

are usually not supported on Windows

do not support user-specific config requirements

rely on a fixed syntax

require repositories (centralized or distributed)



Discussion

Is using OWS overkill?
yes: most DOAP documents are alike (because 
developers create them by copy-paste)

NO: it is necessary
because using a syntactic approach to address an 
intrinsically semantic problem will always be a kludge

because it allows semantic scalability

perspective: other ontology manipulation functions 
(mapping...) also implemented as OWS

e.g. semwebcentral2doap, sourceforge2doap,...



Perspectives

Provide doap files for Protégé and the major 
plugins (easy enough) (?)

can be automated (e.g. ant script)

freshmeat2doap, sourceforge2doap and 
semwebcentral2 doap

Represent (and handle) dependencies
between software (e.g. prompt requires Protégé)

between specific versions of software
myPlugin-2.12 requires Protégé-3.1

Protégé-3.1 requires java-1.4 


