

### Ontologies: Ancient and Modern

Professor Nigel Shadbolt
School of Electronics and Computer
Science
University of Southampton



### The work of many people...

- Harith Alani
- Steve Harris
- Nick Gibbins
- Yannis Kalfoglou
- David Dupplaw
- Bo Hu
- Paul Lewis
- SrinandanDashamapatra

- Hugh Glaser
- Les Carr
- David de Roure
- Wendy Hall
- Mike Brady
- David Hawkes
- Yorick Wilks
- •
- •



#### Structure

- A little history
- Ontologies and Knowledge Engineering
- Ontologies in the age of the WWW
- Ontologies in AKT
- Enduring problems and challenges
- Future progress



### Ontologies - Realist Stance

- We engage with a reality directly
  - Reality consists of pre existing objects with attributes
  - Our engagement may be via reflection, perception or language
- Philosophical exponents
  - Aristotle
  - Leibnitz
  - the early Wittgenstein
  - :
- Language and logic pictures the world
- Seen as a way of accounting for common understanding
- Promises a language for science







#### Constructivist Stance

- There is no simple mapping into external objects and their attributes in the world
- We construct objects and their attributes
  - This construction may be via intention and perception, it may be culturally and species specific
- Philosophical exponents
  - Husserl
  - Heidegger
  - Later Wittgenstein
  - :







 Language as games, complex procedures, contextualised functions that construct a view of the world



### Ontologies - Current Context

- The large metaphysical questions remain
  - What is the essence of being and being in the world
- Our science and technology is moving questions that were originally only philosophical in character into practical contexts
  - Akin to what happened with natural philosophy from the 17<sup>th</sup> century – chemistry, physics and biology
- As our science and technology evolves new philosophical possibilities emerge
  - Particularly when we look at knowledge and semantic based processing
  - We will return to this...



## Knowledge Engineering: Evolution

general-purpose search engines (GPS) first-generation rule-based systems (MYCIN, XCON) emergence of structured methods (early KADS) mature methodologies (CommonKADS)

1965

1975

1985

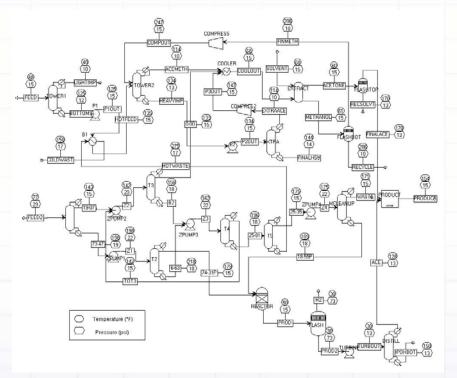
1995

=> from art to discipline =>



# Knowledge Engineering: Principles

- Knowledge engineering is not about transfer but about modelling aspects of human knowledge
- The knowledge level principle: first concentrate on the conceptual structure of knowledge and leave the programming details for later
- Knowledge has a stable internal structure that can be analysed by distinguishing specific knowledge types and roles



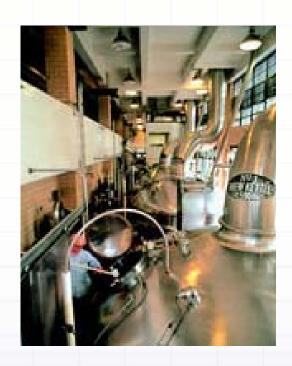

### Ontologies in Knowledge Engineering

- A variety of tools developed to support the acquisition and modelling of knowledge structures
- Many of the patterns developed could be viewed as abstract conceptual structures – ontologies were there throughout and became more prominent
- There were explicit ontologies for modelling domain classes and their relationships
- There were claims and counter claims about how task neutral such conceptual structures could be



### Constraint and Frame Oriented Knowledge-Based System






McBrien, A.M., Madden, J and Shadbolt, N.R. (1989). Artificial Intelligence Methods in Process Plant Layout. *Proceedings of the 2nd International Conference on Industrial and Engineering Applications of AI and Expert Systems*, pp364-373, ACM Press



### Perceptually Oriented Knowledge-Based System







Bull, H.T, Lorrimer-Roberts, M.J., Pulford, C.I., Shadbolt, N.R., Smith, W. and Sunderland, P. (1995) Knowledge Engineering in the Brewing Industry. *Ferment* vol.8(1) pp.49-54.



#### And then the Semantic Web

- Fundamentally changed the way we thought about KA and knowledge management
- Suggested a different way in which knowledge intensive components could be deployed
- Also brought together a community unencumbered by close attention either to AI or Knowledge Engineering
- New funding opportunities...



# Advanced Knowledge Technologies IRC









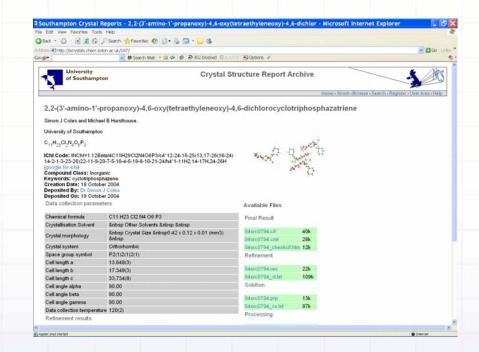


AKT started Sept 00, 6 years, £8.8 Meg, EPSRC

www.aktors.org

Around 65 investigators and research staff

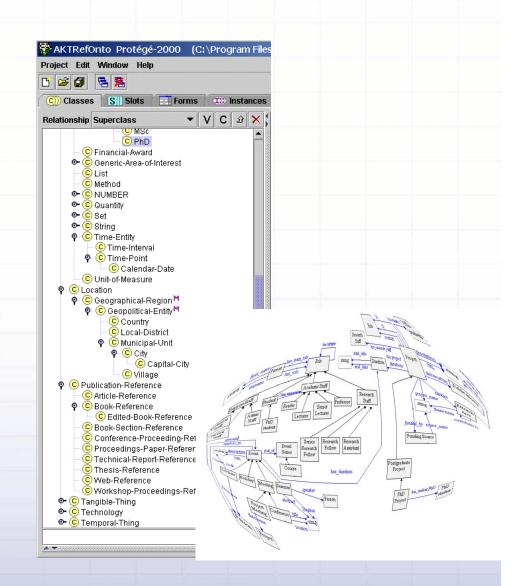



#### Ontological Lessons Learnt

- The content is primary
  - It needs rich semantic annotation via ontologies
  - Services emerge/designed to exploit the content
- Lightweight ontologies work
  - In support of rapid interoperability
- Ontologies as mediators
  - Aggregation as a key capability
- Ontologies are socio technical
  - Act as declarative agreements on complex social practice

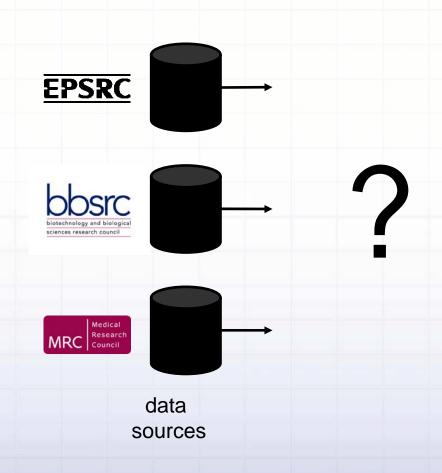


### Primacy of content - eCrystal


- Simple but powerful use of existing conceptual structures
- Domain markup language
- Close to a realist interpretation of an ontology
- Protégé Requirement
  - Import of simple CML schema

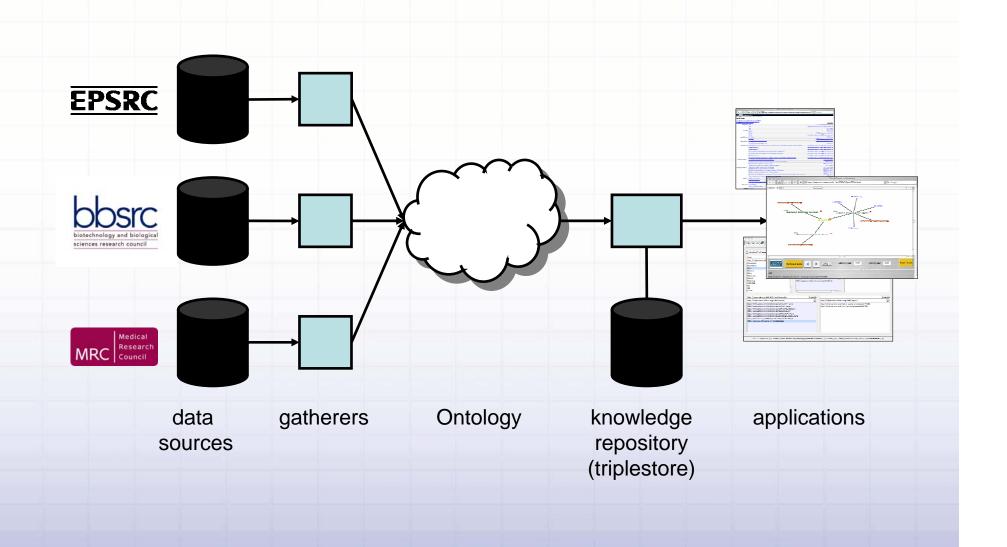





### The AKT Ontology

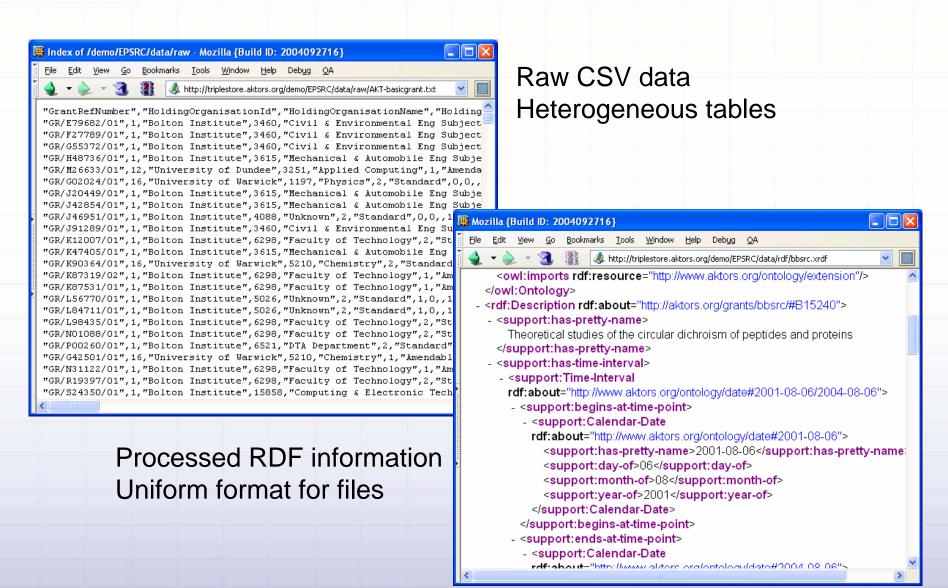
- Designed as a learning case for AKT
- Adopted for our own Semantic Web experiments including CS AKTive
- Uses a number of Upper Ontology fragments
- Reused in many contexts






## Mediation and Aggregation: UK Research Councils

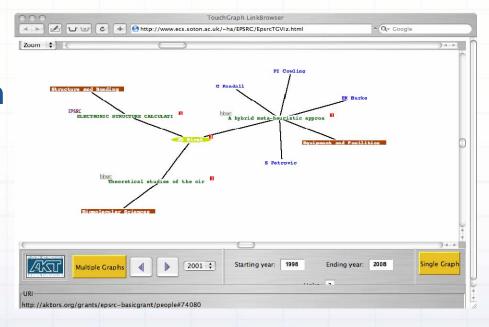





### A Proposed Solution






## Mediation and Aggregation: UK Research Councils



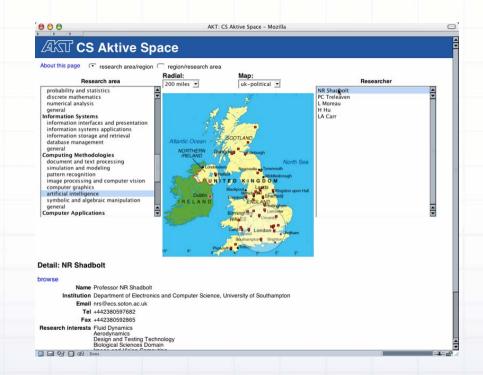


#### An Application Service

- Relatively simple could yield real information integration and interoperability benefits
- Reuse was real but again lightweight
- Ontology winnowing would be very useful
- Protégé Requirement
  - Stats packages for ontologies – how to map back from implemented ontologies to the statistics of use

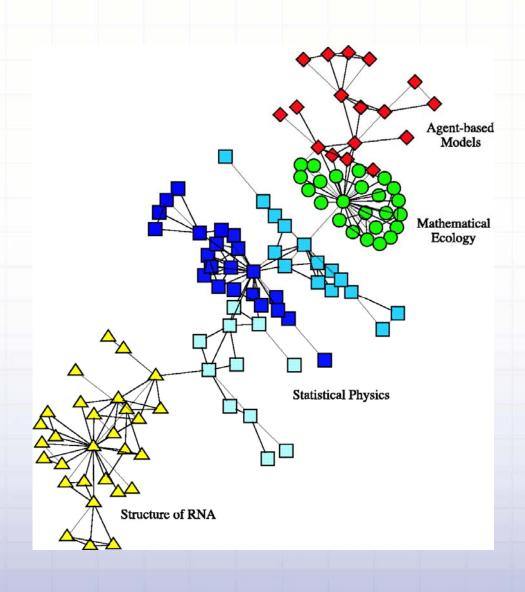





## Mediation and Aggregation: CS AKTive Space

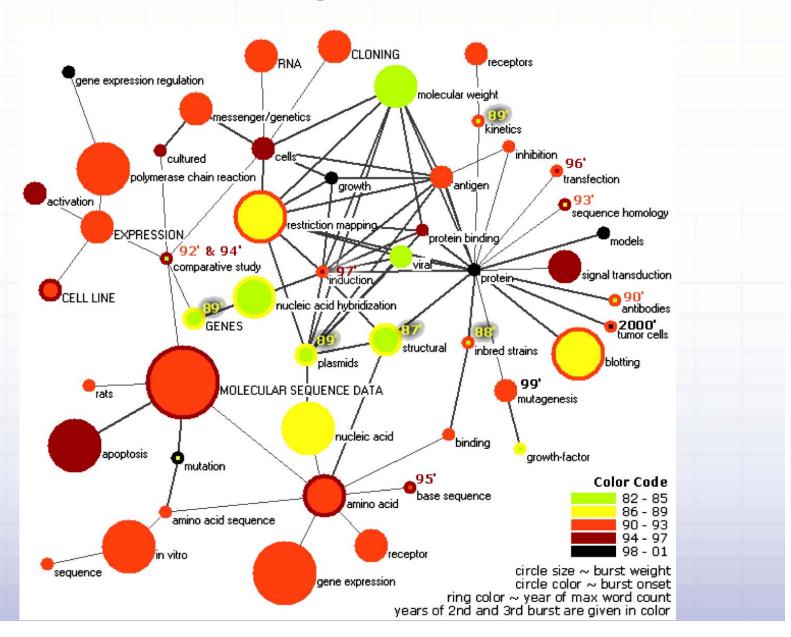
- 24/7 update of content
- Content continually harvested and acquired against community agreed ontology
- Easy access to information gestalts who, what, where
- Hot spots
  - Institutions
  - Individuals
  - Topics
- Impact of research
  - citation services etc
  - funding levels
  - Changes and deltas
- Dynamic Communities of Practice...




## Mediation and Aggregation: CS AKTive Space

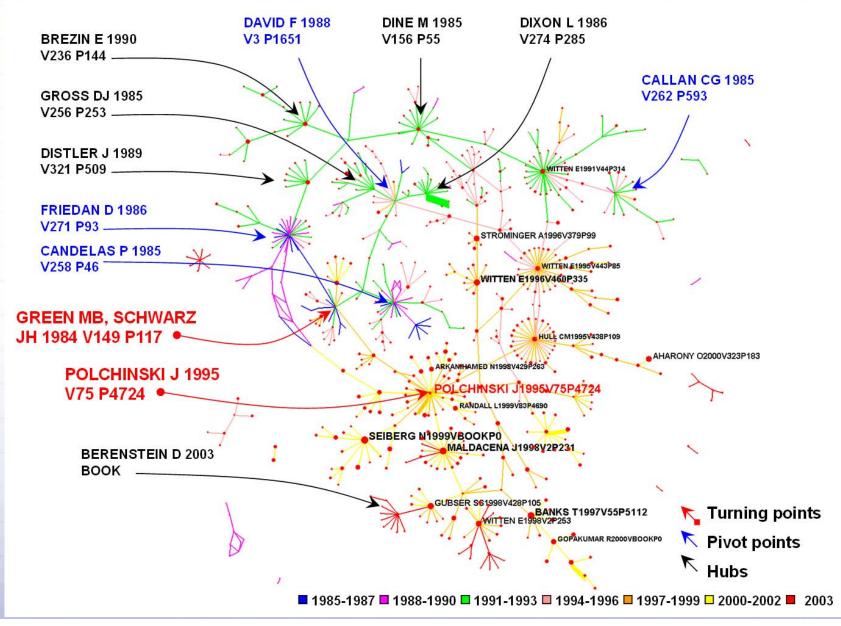
- Content harvested and published from multiple Heterogeneous Sources
- Higher Education directories
- 2001 RAE submissions
- UK EPSRC project database (all grants awarded by EPSRC in the past decade)
- Detailed data on personnel, projects and publications harvested for:
  - all AKT partners
  - all 5 or 5\* CS departments in the UK
  - Automatic NL mining: Armadillo
- Additional resources
  - All UK administrative areas (from ISO3166-2)
  - All UK settlements listed in the UN LOCODE service
  - (and they're all integrated via the AKT reference ontology)
- Protégé Requirement
  - Support between a frame and DL oriented perspective






## Extending the model – knowledge mapping: author mapping

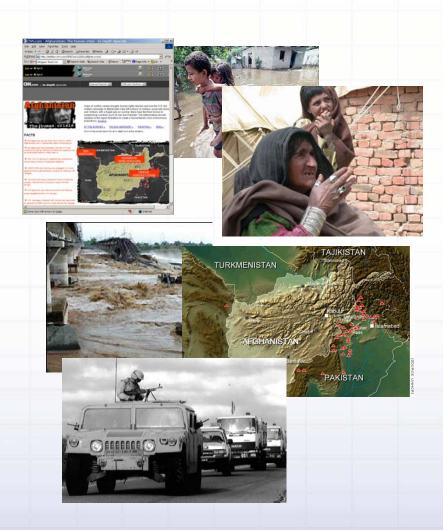





## Extending the model - knowledge mapping: topic bursts






## Extending the model – knowledge mapping: pathfinder





### DTC Project: OOTW

- improved situational awareness in the coordination, planning and deployment of humanitarian aid operations
- integrating operationally-relevant information
- discovery and exploitation of novel information sources





### Capability Requirements

- Event notification
- Facilitation of agent communication networks
- Coordination, planning and deployment of humanitarian aid efforts
- Collaboration of military and humanitarian aid operatives
- Semantically-enriched decision support

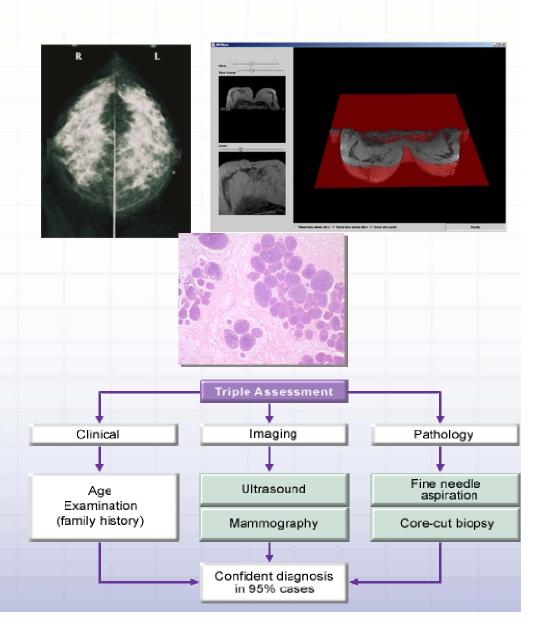








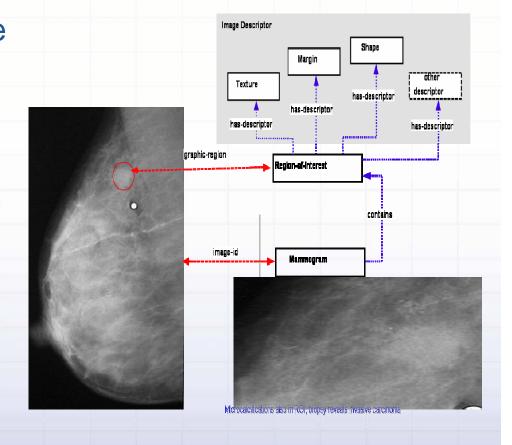
#### Information Resources


- exploitation of semantically heterogeneous and physically disparate information sources, e.g.
  - tactical datalinks
  - METAR weather reports
  - BBC monitoring service
  - other news feeds
  - NGO reports
  - institutional websites,e.g. NGDC, NOAA, SPC



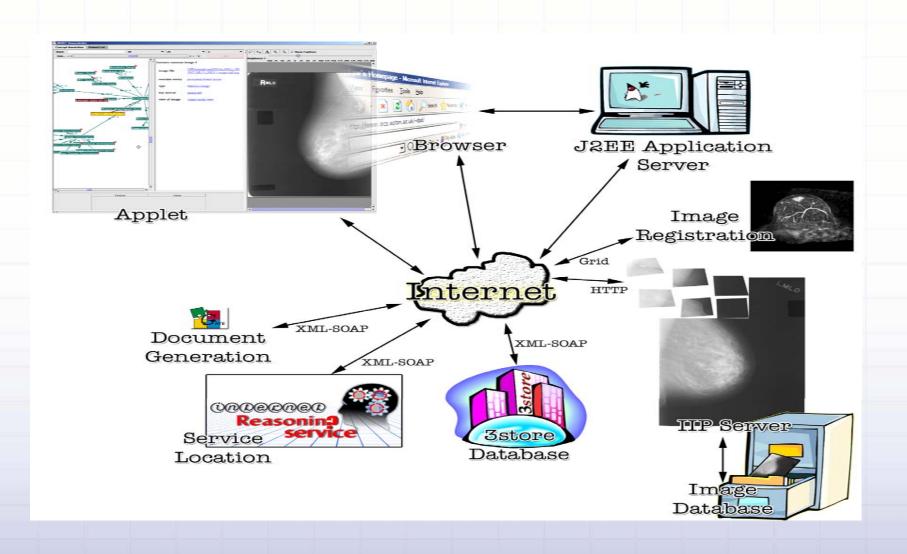


### Complex Ontologies: MIAKT


- Multiple stakeholders
- Multiple viewpoints and ontologies (some implicit)
  - Breast imaging X-ray, ultrasound, MRI
  - Clinical examination
  - Microscopy cells and tissues (also, hormone receptors)
- Local dialects in use
- Variation between countries due to factors such as insurance claims!
- Protégé Requirement -Support for multimedia annotation
- Protégé Requirement -Supporting and Mapping Between Multiple Perspectives






### Ontologies in MIAKT

- Information indexed against ontologies can be retrieved via concept labels
- Image retrieval for annotated images
- Recognition of "significant" condition necessary
- Labels are outcome of classification
- Entered into ontology as declarative concepts



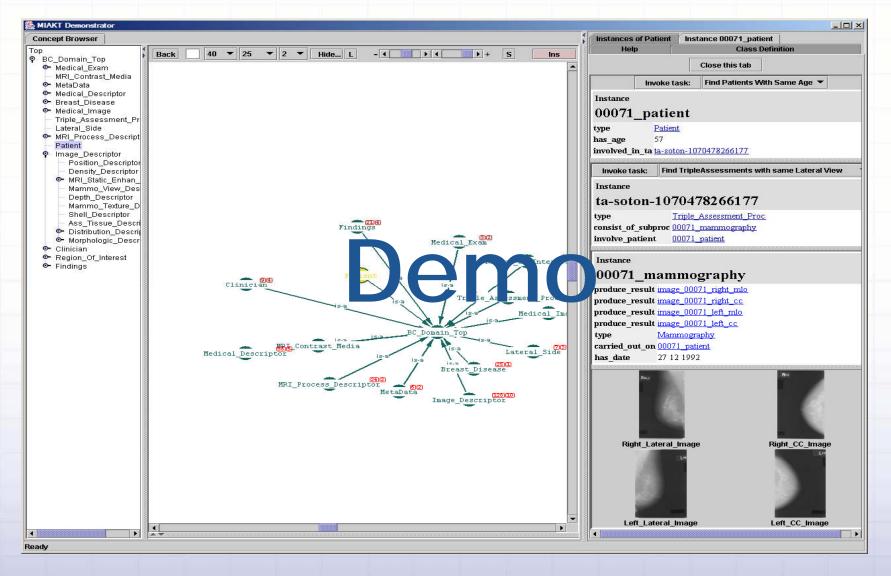


#### The MIAKT Framework





#### Patient Cases in RDF


```
<rdf:Description rdf:about='#g1p78 patient'>
  <rdf:type rdf:resource='#Patient'/>
 <NS2:has_date_of_birth>01.01.1923</NS2:has_date_of_birth>
 <NS2:involved in ta rdf:resource='#ta soton 000130051992'/>
</rdf:Description>
<rdf:Description rdf:about='#ta soton 000130051992'>
  <rdf:type rdf:resource='#Multi Disciplinary Meeting TA'/>
  <NS2:involve_patient rdf:resource='#g1p78_patient'/>
 <NS2:consist_of_subproc rdf:resource='#oe_00103051992'/>
  <NS2:consist of subproc rdf:resource='#hp 00117051992'/>
  <NS2:consist of subproc rdf:resource='#ma 00127051992'/>
 <NS2:has_overall_impression rdf:resource='#assessment b5 malignant'/>
  <NS2:has overall diagnosis>invasive carcinoma</NS2:has overall diagnosis>
</rdf:Description>
<rdf:Description rdf:about='#oe 00103051992'>
  <rdf:type rdf:resource='#Physical Exam'/>
  <NS2:has date>03.05.1992</NS2:has date>
 <NS2:produce result rdf:resource='#oereport alp78 1'/>
  <NS2:carried out on rdf:resource='#q1p78 patient'/>
</rdf:Description>
<rdf:Description rdf:about='#oereport_glp78_1'>
  <NS2:type rdf:resource='#Lateral_OE_Report'/>
 <NS2:contains roi rdf:resource='#oe roi 00103051992'/>
 <NS2:has lateral rdf:resource='#lateral left'/>
</rdf:Description>
```



### **MIAKT Services**

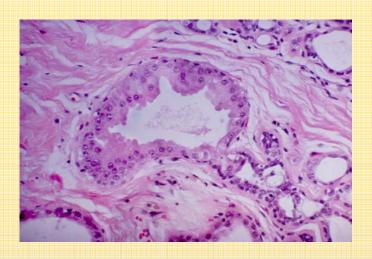
- Image Analysis Services
  - Oxford's XRay Mammogram Analyser
  - KCL MRI Mammogram Analyser/Classifier
- Classification Services
  - Abnormality Naïve Bayes Classifier (Soton)
  - MRI Lesion Classifier (KCL)
- Patient Data Retrieval Services (OU)
  - For example, "Find Patients With Same Age"
- Image Registration (KCL)
  - GRID service invoked via web-service
- Natural Language Report Generation (Sheffield)
  - Generate a patient report from RDF description
- UMLS Lookup (Sheffield)
  - Lookup term definitions in the UMLS
- Patient Records also accessed through web-service (Soton)
  - Web-service enabled AKT 3store







## What are the ontological classes in MIAKT?

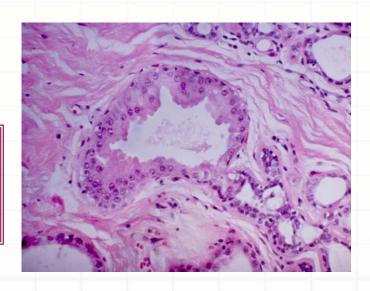

- After Dasmahapatra and O'Hara 2005
- They are end-products of epistemological and/or decision-making procedures
- One needs to "recognise" instances of a particular class as such
- Information indexed against an ontology can be treated declaratively (Tarski, OWL), but ...
- ... they come into being procedurally against social and institutional norms



#### Institutional Norms

• NHS guidelines suggests for identification of apocrine cells (common false positive):

"Recognition of the dusty blue cytoplasm, with or without cytoplasmic granules with Giemsa stains or pink cytoplasm on Papanicolaou or haematoxylin and eosin stains coupled with a prominent central nucleolus is the key to identifying cells as apocrine."




- Common false-positives in FNAC is misdiagnosis of apocrine cells as malignant condition (pleomorphic appearance signals malignancy; morphological characteristics trad. distinguishing classification criteria for pathologists)
- For KR support, need to record not just the label relevant for diagnosis ("apocrine cells") but also the means by which such a labelling was achieved



#### Formalised Procedures

```
 \forall x \left( \text{fixed-sample}(x) \land \exists y_{\bullet} \left[ \text{stain}(y_{\bullet}) \land \text{stained-with}(x, y_{\bullet}) \longrightarrow \right. \\ \left. \text{Some-Pathological-Concept}(x) \longleftrightarrow \exists z_{\bullet} \left( \text{colour}(z_{\bullet}) \land \\ \exists w \left( \text{cytoplasm}(w) \land \text{contains}(x, w) \land \text{has-colour}(w, z_{\bullet}) \right) \right) \right] \right)
```



 For laboratory practice L(x, t) that specimen x is subjected to in context t (time, state variables for exptal/clinical conditions) a predicative attribute P(x) is identified with behavioural response B(x, t) leading to an implicit definition of P(x)



### Procedures for Reproducibility

 Specific criteria for identifying histopathological slides as instances of particular lesions – rule following props – make concept labelling reproducible

| Standardised Protocol |            | Non-standard Protocol |            |
|-----------------------|------------|-----------------------|------------|
| 6 Pathologists        |            | 5 Pathologists        |            |
| # Agree               | % of cases | # Agree               | % of cases |
| 6/6                   | 58         | 5/5                   | 0          |
| 5/6                   | 71         | 4/5                   | 20         |
| 4/6                   | 92         | 3/5                   | 50         |

For Ductal Carcinoma in situ, Atypical ductal hyperplasia, procedural criteria reduces inter-expert variability

Criteria of Page et al (Cancer 1982; **49**:751-758; Cancer 1985; **55**:2698-2708), reported by Fechner in MJ Silverstein (1997). Ductal Carcinoma In Situ of the Breast



### Norms and Rule-following

- Concept use in medical practice requires the recognition of instances as instances of appropriate classes
- Classes are assigned as proxies of groups of instances to respond in coherent ways to patterns of questioning
- Class ascription needs to be reproducible
- Reproducibility is enhanced by rule-following



### So Ironically...

- What was regarded as an implausible philosophical account of ontology (realist) now finds a new embodiment
  - Machines are able to support Tarski semantics
- There is a coming together of a procedural/constructivist account within an apparently traditional formal semantics
- There is a place for a denotational semantics that support ontologies
- But do not expect the meanings to remain stable they are constructed – they have always been
- Need to understand how meaning will become more richly constructed by our machines and systems in the future



## And Finally Requirements on any Ontology Engineering Framework

- Maintenance
  - How to support dynamic evolution
- Viewpoints
  - Mapping within and between perspectives
- Context
  - Design Rationale
- Reuse
  - Disaggregating, modularity, patterns
- Multimedia
  - Annotation and feature extraction
- Rules and procedures
  - Objects/Descriptions & Rules/Procedures



### Real ontologists ....

- Real ontologists consider themselves well dressed if their socks match.
- Real ontologists have a nontechnical vocabulary of 800 words.
- Real ontologists give you the feeling you're having a conversation with an dial tone.
- Real ontologists wear badges so they don't forget who they are.
- Real ontologists don't find the above at all funny.

